別表1

ISS の潜在的活用項目

	ライフ・イノベーション		
軌道上研究室の活用	> 有人宇宙飛行のための宇宙医学		
	> 基礎医学・先制・臨床医学(地上では見落としていた現象の発見)		
	> タンパク質合成(DNAと生体の接点、添加物効果、創薬への期待)		
	> 生命の歴史性の究明		
	グリーン・イノベーション		
	> 閉鎖環境における3R技術への挑戦・波及(「宇宙船地球号」のシミュレーション)		
	> 環境急変監視・地上災害観測(目視の再評価、「火の見櫓」)		
	物質・材料研究		
	> ナノテクノロジー		
	▶ 高分子材料合成		
	> 金属・半導体結晶材料(現状では期待小)		
	「きぼう」完成と HTV の定期運行により、容易なアクセスの実現と曝露部活用で生ま れた新たに提案された利用発想。軌道上実験と地上実験の呼応・連携が前提。修理等 も可能とする装置開発(ロボット・アーム等)ならびに有人操作の拡大の検討・実現が 必要。		
	> 最先端リモセン用センサー機能の動作確認実験		
技術実証試験台(Engineering	> 宇宙空間での部品信頼性確認(ジャイロ、回路)		
Test Bed)の活用	> 小型衛星の動作確認実験		
	> 複数衛星 NW 化確認実験		
	地球環境の特殊性(酸素、重力の働き等)の発見		
	> 天然資源採掘プラントの目視監視の有効性確認		
	> 目視による安全保障の可能性確認		
宇宙滞在体験による知の拡大 (青少年のフロンティア精神高 揚等)	> 芸術		
	> 地上環境への新たな発想創出(人類生息困難地域への理解を含む)		
	> 文明(国境等)への理解		
	▶ 宇宙旅行		
	▶ 有人宇宙探査(惑星、ラグランジュ点)		
恒久宇宙基地化を視野に入れ	▶ 曝露部等の増設・追加(ランデブー)		
た検討施設	▶ 観光対応施設の増設		
	> 宇宙空間での国際安全保障		

別表2

将来の有人宇宙開発に必要な技術領域と我が国の方向性

٠

技術領域	世界の技術レベル	まが国の現状と方向性
低軌道からの 帰還技術	【米国・ロシア】 米露とも、人・物資とも帰還技術の実績は豊富。 ただし、ISS 計画においては、米国はシャトル退役後は、現 在開発中の民間輸送増に依存。 ロシアも、ソユーズで3名までの人員輸送と 50kg 程度の物 資回収のみに限定される。 【欧州】 ATV に回収機能追加としてのARVを研究開発中(物資回収 機の運用開始目標は2015年頃)。	USERS、OREX、HYFLEX、ALFLEX、はやぶさなどで 帰還に係る一部の要素技術実証の実績はあるが、将来の 有人化対応としての技術実証(軽量・大型化を想定した熱防 護、攝力飛行、定点誘導、衝撃緩和など)は未実施。 HTV に物資回収機能を付加することにより、ISS 回収需 要に貢献しつつ、かつ将来の有人機に不可欠な帰還技術 の設計開発手法の見通しも効率的に得ることが期待でき る。
生命維持技術 (空気再生)	【米国・ロシア】 米国とも、活性炭や触媒による空気の清浄化を実施し、運用 実績は豊富。 また、将来の有人宇宙活動に必要となる CO2 から O2 への 再生技術が今後軌道上実証予定。 【欧州】 現時点での軌道上運用実績はないが、研究開発を実施中。	空気循環と温湿度管理については、「きぼう」の開発・運用 で実績はあるが、空気再生技術開発の実績は現時点では ない。 ただし、空気再生技術については、日本の得意とする環 境技術をベースとして、常温触算による省電力の空気清浄 化技術の研究、及び低い反応温度での OO2 から O2 への 再生技術の研究も進んでいる。今後は、軌道上での技術実 証を早期に実現していくことが肝要。
生命維持技術 (水再生)	【米国・ロシア】 ISS では尿などの汚水を蒸留した上で逆浸透(RO)膜でろ過 する方法で飲料水に再生している。(ただし、大電力が必要) 【欧州】 現時点での軌道上運用実績はないが、研究開発を実施中。	逆浸透(RO)膜は日本企業が世界トップシェアを誇る得意 技術であり、高効率型の RO 膜を活用した水再生技術も地 上で既に実証済。 また、アンモニアを蒸留ではなく効率的な電気分解除去する 研究も進み、世界水準を超える技術獲得も期待できる。
宇宙医学	 「米国・ロシア】 1960年代から技術開発を実施し、現在までに様々な宇宙医学データを取得・蓄積済み。今後も将来の有人宇宙探査に向けて研究活動を継続実施中。 【欧州】 宇宙飛行士の搭乗機会を利用して獲得中。 	宇宙飛行士の搭乗機会を利用し、ISS でのデータ取得を 総続的に実施中。 骨量/筋肉量減少予防対策や放射線被曝管理では ISS で一定の実績があり、高齢化社会への貢献など、地上へ の応用も進みつつある。今後も計画的な推進が不可欠。 また、長期滞在飛行士の心理的ストレス緩和方法、医療 システム開発などは、将来の有人宇宙活動にとっても必要 不可欠であり、「きぼう」を活用した技術実証を実施していく ことが必要。
宇宙服技術	【米国・ロシア】 様々な有人宇宙プログラムにおいて、独自に技術を確立し、 逆用実績も豊富。 【欧州】 宇宙服の開発は未実施。要素レベルの基礎研究は実施中。	宇宙服の開発は未実施だが、基礎研究は実施中。 特に日本が誇る世界有数の技術(多機能繊維、縫製技術、 小型電源等)を駆使することで、脱窒素作業(プレブリーズ) 不要な 0.58 気圧での宇宙服運用の実現など、最先端技術 を獲得できる可能性がある。 また、ISSを活用することにより、宇宙空間での宇宙服運 用性能を無人、有人で効率的に技術実証が可能。
ドッキング技術	【米国】 有人機でマニュアルランデブー・ドッキング技術の運用実績 は豊富。無人機の自動/自律ランデブー・ドッキングの技術 実証の実績は少ないが、オバマ政権の新宇宙政策におい て、フラッグシップ技術実証のひとつとして挙げられている。 【ロシア】 無人、有人機とも自動/自律ランデブ・ドッキング技術を確 立し、運用実績も豊富。 【欧州】	有人安全を満足した無人の自動ランデブー技術はHTV で獲得。また、小規模無人機体による自動ランデブー・ドッ キング技術は ETS-VII で実績がある。 将来の軌道上活動に向け共通インタフェースのドッキン グ機構を利用することが検討されており、日本としても同様 な機構を開発していくことが国際協力の中で求められる。 また、ロボティクス支援がない場合でもドッキングを可能 とするため、HTV を活用した段階的な技術実証を計画的に 進めていくことが必要。(例えば、まず、ISS 補給ミッション 完了後の HTV 単独飛行時を活用したドッキング実験の実 施。その後、後続の HTVに実証用のドッキング機構を搭載
	ATVIこてロシアのドッキング機構を使用した自動ランデブ ー・ドッキング技術を獲得	し、ISSとの自動/自律ドッキング実験の実施など。)

÷

平成22年4月21日

宇宙開発委員会

1. 趣旨

国際宇宙ステーション(ISS)は、計画提唱から四半世紀を経て、間もなく完成の 時期を迎えようとしている。我が国初の有人施設である日本実験棟「きぼう」は、 2008年より3回に分けて打ち上げられ、2009年7月に完成し、本格的な利用段階 に入ったところである。

ISS 計画の運用については、その主要な役割を担う米国は、当初、2015 年まで の運用を前提とする計画を検討していたが、本年2月に米国議会に提出された航 空宇宙局(NASA)の 2011 年度予算案において、少なくとも 2020 年まで運用を継 続することを発表した。その後、NASA は ISS 参加各極に対し、早期に政府間での 合意を形成するよう要請した。実施機関レベルでも、3月11日に日本で開催された ISS 参加各極の宇宙機関長会議(HOA)において、2016 年以降の運用継続に向 けた方針を確認し、今後各政府内で合意をとるための必要な手続きを踏んで行くこ とを共同声明として発表した。

以上の状況から、国際的な動向に則して、我が国としても早期に2016年以降の ISS 運用に関する考え方を明確化し、できる限り早期に政府としての判断を行う必 要がある。その判断に当たっては、ISS計画を担当する文部科学省としての考え方 を明確にする必要があるため、文部科学大臣の要請に基づき、宇宙開発委員会の 下に国際宇宙ステーション特別部会を設置して、科学技術・イノベーション、国際協 力、運用コスト、教育的効果等多面的な観点から調査審議を行うこととする。

2. 審議事項

(1) ISS 計画への参加の今日的意義

※ 科学技術・イノベーション、将来宇宙探査、国際協力、外交、安全保障、教 育、運用コスト等の多面的観点から調査審議

(2) ISS 利用・運用の継続を判断するに当たっての留意点

3. 構成員

別紙の通り。

4. 検討スケジュール

上記審議の結果を、本年6月中旬を目途に宇宙開発委員会に中間的に報告する ものとする。

25

(別紙)

国際宇宙ステーション特別部会

構成員

(委員)

- 部会長 池上 徹彦 宇宙開発委員会委員長
 - 青江 茂 宇宙開発委員会委員長代理
 - 井上 一 宇宙開発委員会委員
 - 野本 陽代 宇宙開発委員会委員
 - 森尾 稔 宇宙開発委員会委員
 - (特別委員)
 - 浅島 誠 産業技術総合研究所フェロー 兼 幹細胞工学研究センター長 東京大学大学院総合文化研究科特任教授 兼 総長室顧問
 - 岸 輝雄 物質·材料研究機構顧問
 - 鈴 木 章 夫 東京海上日動火災保険株式会社技術顧問
 - 角 南 篤 政策研究大学院大学 准教授
 - 田 中 明 彦 東京大学大学院情報学環·東洋文化研究所教授
 - 中須賀 真一 東京大学大学院工学研究科教授
 - 西島和三 持田製薬株式会社医薬開発本部専任主事 東北大学客員教授(未来科学技術共同研究センター)
 - 廣 川 信 隆 東京大学大学院医学系研究科特任教授
 - 的 川 泰 宣 NPO 法人 子ども・宇宙・未来の会 会長
 - 向 井 千 秋 宇宙飛行士 (JAXA有人宇宙技術部宇宙医学生物学研究室長)
 - 安 岡 善 文 国立環境研究所理事
 - 山 川 宏 京都大学生存圏研究所宇宙圏航行システム工学分野教授

26

国際宇宙ステーション(ISS)特別部会 審議経過

〇第1回:4月30日(金)10~13時

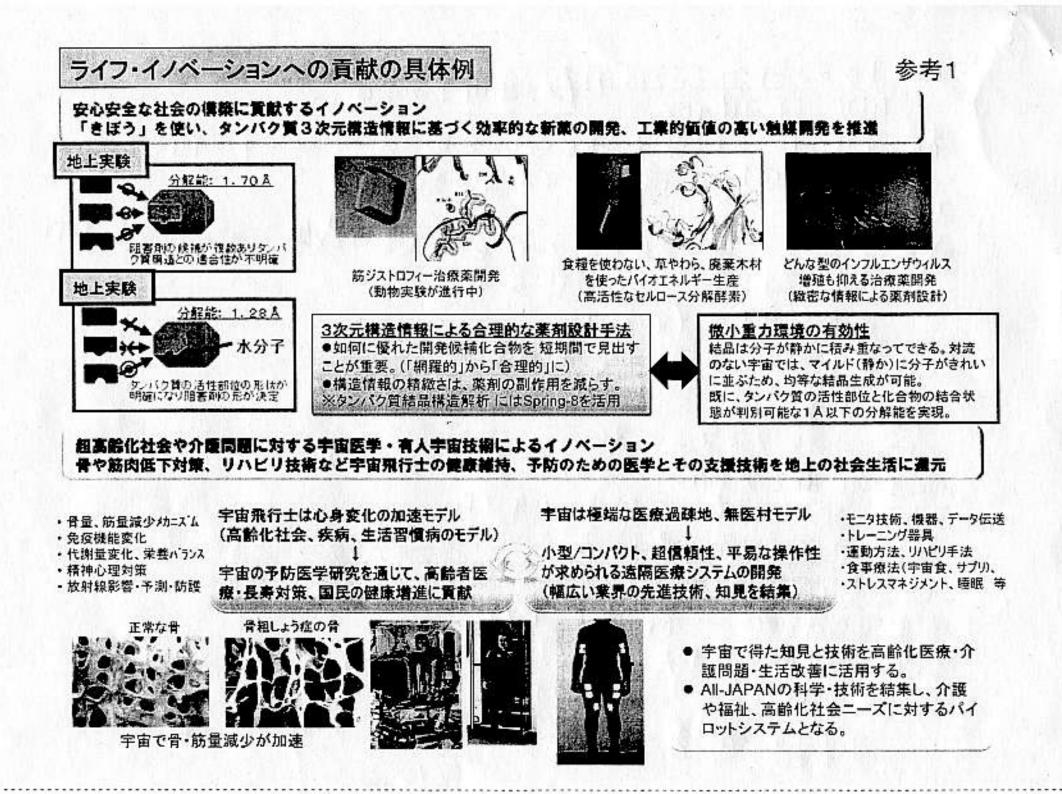
- 1. 国際宇宙ステーションの計画の現状について
- 2. ISS の今日的意義について
- 3. その他
- O第2回:5月14日(金)15~18時·
 - 1. ISSの今日的意義の検証(1)
 - (ア)国際協力(含む海外動向)、外交、安全保障
 - (イ)「きぼう」利用の現状と計画
 - (ウ)「きぼう」利用によるイノベーション
 〇宇宙環境を利用した医学研究(岐阜医療科学大学 間野学長)
 〇無重力を利用した高品質タンパク質結晶の構造解析に基づく 難病(筋ジストロフィー)治療薬の開発(大阪バイオ研究所 裏出研究部長)
 〇宇宙ステーション「きぼう」の利用に関する理研・JAXA の連携協力
 - (理研 上坪特別顧問)

2. その他

〇第3回:5月19日(水)10~12時

- 1. ISSの今日的意義の検証(2)
 - (ア)「きぼう」利用によるイノベーション
 〇応用利用分野で期待される成果(大同大学 澤岡昭学長)
 〇ナノスケルトン実験と社会への波及(東京理科大学 阿部正彦教授)
 〇森林火災検知と抑制計画及び国際宇宙ステーション利用の可能性について (アラスカ大学 福田正己教授)
 〇生命科学研究と「きぼう」利用(産業技術総合研究所 浅島誠氏)
 〇宇宙ステーションの創薬への貢献(持田製薬 西島和三氏)
 (イ)「きぼう」利用の課題
- 2. その他

〇第4回:6月3日(木)13~16時


- 1. ISS の今日的意義の検証(3)
 - (ア)産業育成の観点から
 - (イ)将来宇宙探査を見据えた宇宙技術実証機会
- (ウ)教育の観点から
- 2. その他

〇第5回:6月11日(金)15~18時

- 1. ISS 運用の課題
- 2. 論点整理
- 3. その他

〇第6回:6月17日(木)10~13時

- 1. 中間とりまとめ案について
- 2. その他

グリーン・イノベーションへの貢献の具体例

地球圏の総合的な観測と監視を目指し、地球規模で起きている様々な問題の迅速な把握と情報発信を行う

宇宙実験で得られたデータを基 く従来>

高効率な太陽電池や、ガソリン

生産用触媒等環境・エネルギー

問題の解決に貢献。

に、地上でナノ構造材料を生成(孔径)3~4nm

8

アモル

ファス状

< 新規: ナノスケルトン

消耗剂(色素):

太陽電池用途

壁原が結晶構造

(アナターゼ構造)

(孔徑)7~15 nm

高融点金属(希少金属)を微量添加 することで、材料特性は飛躍的に変化 (添加組成は機密)

将来の希少資源問題対策に貢献。 ・最適な組成の設定 ・特性把握による代替材料創成

ジェットエンシンタービンフレード(M表現創業合変 などの特定時度への応用 またなりるの気化時時にも少ない、形向する、そので