

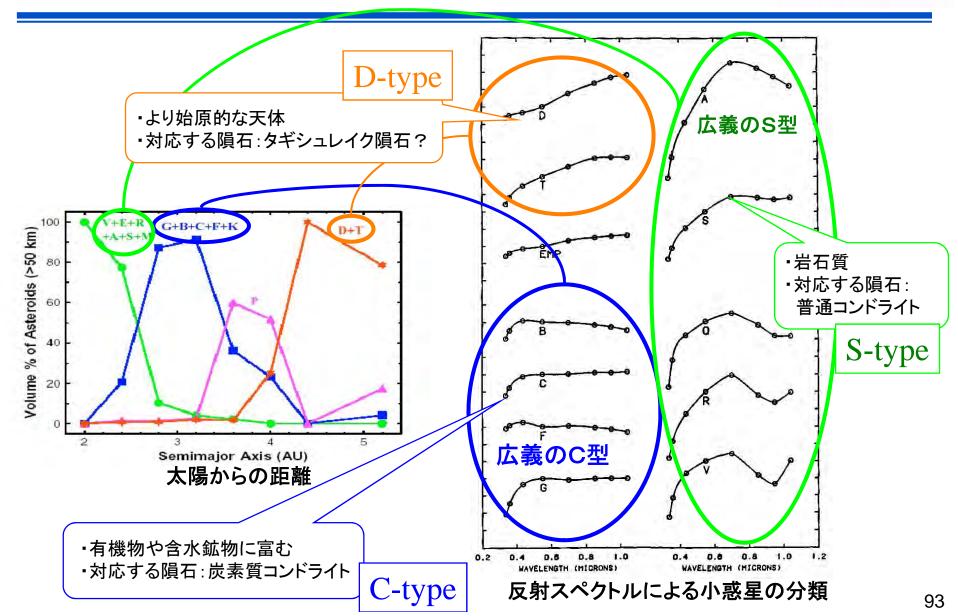
添付資料

推進部会での主な助言に対する検討結果

推進部会での主な助言に対する検討結果(1/2) 大名 (1/2) 大名 (1/2)

No	評価における助言	検討結果				
プロジェ	プロジェクトの目標					
1	サンプルを確実に採取するために、リスク評価を十分に実施し、想定される不具合の推定、 その回避のための設計上の配慮、さらには不成功の場合の今後の小惑星探査ミッション の展開などについて検討すること。	本文22頁に示す。				
プロジェ						
11	限られた費用の下で開発されるシステムであるだけに、ミッション達成の可能性・確率、サバイバビリティを、システム全体としてどのように高め確保するか検討すること。	本文33頁に示す。				
その他						
1	システム選定及び基本設計要求					
	宇宙ミッションでは宇宙放射線の影響、通信障害等の不測の事態で、どうしてもある程度の故障発生は避けられない。小型探査機ゆえの難しさはあるが、冗長性の追加及びロバスト性に関して十分検討すること。	本文33頁に示す。				
1-2	衝突体発出装置は今回のミッションの成否を握る重要な技術要素と考えるが、小惑星の 地表面情報が限られているなかで、どの程度地上試験が有効か見極める必要がある。また、衝突体の発出方法についても更なる工夫を検討すること。	本文52-55頁に示す。				
2	開発計画					
	今回のミッションは月・惑星探査プログラムグループの下でのものではあるが、宇宙科学研究所の進め方とは異なるとはいえ、今回のような理学、工学の両方で目標を掲げるならば、小惑星探査に強い情熱を持つ小惑星・太陽系科学者、深宇宙探査の工学的専門家がそれぞれリーダとして見えるような体制を早急に構築すること。	本文72頁に示す。				
2-2	JAXA内外で多数の分散化されたチームや研究者が関わっており、はやぶさ2の2014年の確実な打上げを目指し、プロジェクトを効率的に管理すること。	本文73頁に示す。				

推進部会での主な助言に対する検討結果(2/2) 大名


No	評価における助言	検討結果
2-3	地上系については「はやぶさ」からの変更箇所を最小限にするとある。設備の一部再利用などもあると思われるが、実利用が5年後以降なので、老朽化・電子部品の性能向上などを十分考慮して準備を進めること。	本文65頁に示す。
2-4	探査機が採取した試料の分析に関し、「初期分析を1年間行った後、全世界の研究者に公開して詳細分析を行う」とされているが、真空保管や高純度窒素ガス雰囲気での作業を計画しているものの、大気中の酸素や水により試料の状態が時間とともに大きく変化する可能性があり、短寿命放射性元素に関しても時間の影響が大きいので、最大の「科学的成果」を挙げるためには、初期分析の優先順位の検討や、1年後ではなく初期段階から世界の専門家の英知を結集して分析する等、事前に十分検討すること。	本文76頁に示す。
2-5	今後の分析技術の進捗を反映して、超一流の分析の実施を目指し、更なる分析体制の充実と 強化を図ること。	本文77頁に示す。
3	リスク管理	
3–1	以下の3つの点が今回の大きなchallengeであると思われるが、この点についての対応策、改善策が未だ具体的でないように思われるので、具体的な改善策を「開発」移行までにしっかりと検討すること。 (i)探査機本体を小惑星の表面に確実に着陸させること(転倒させない) (ii)探査ロボットによる小惑星の表面環境の探査 (iii)目標としている量のサンプルを採取する手法	
3-2	深宇宙探査では、対象となる天体との距離が大きく、制御系の動作と地上との時間差が問題となる。どこまでが地上からの制御で、どこからが衛星の自律的制御になるか、「はやぶさ」の成功、教訓を踏まえた上で、十分なリスク管理をすること。	
4	その他	
4-1	将来の深宇宙探査に向けての各種搭載機器・センサー類等についても、長期的視点で開発に 取り組むこと。	本文78頁に示す。
4-2	本プロジェクトに限らず、開発資金の妥当性に関して、より明確にするための方途につき検討 すること。	本文75頁に示す。

参考資料

小惑星の型について

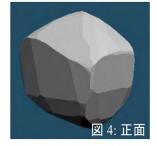
「はやぶさ2」探査対象天体: 1999 JU3 >

観測キャンペーン(2007~2008/H19~H20)まで に得られた物理情報のまとめ

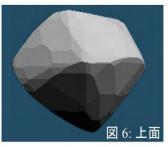
自転周期: 0.3178day (~7.6 h)

自転軸の方向: (λ, β) =(331, 20)

軸比 = 1.3:1.1:1.0


大きさ: 0.922 ± 0.048 km

アルベド: 0.063 ± 0.006


等級等:H=18.82 ± 0.021, G=0.110 ± 0.007

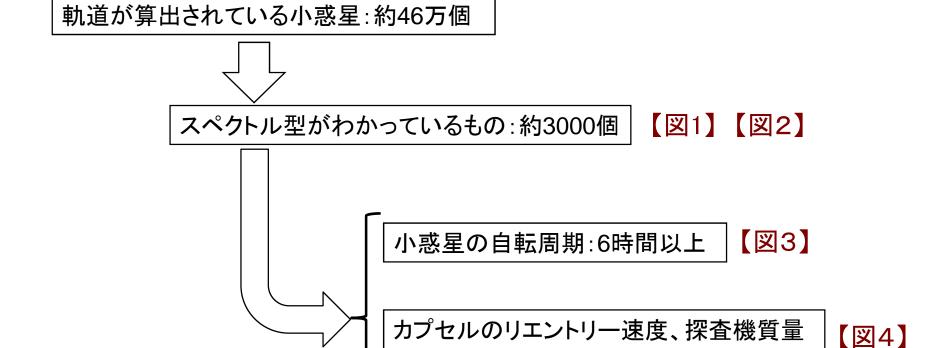
タイプ: Cg

推定された形状



(川上らによる)

軌道



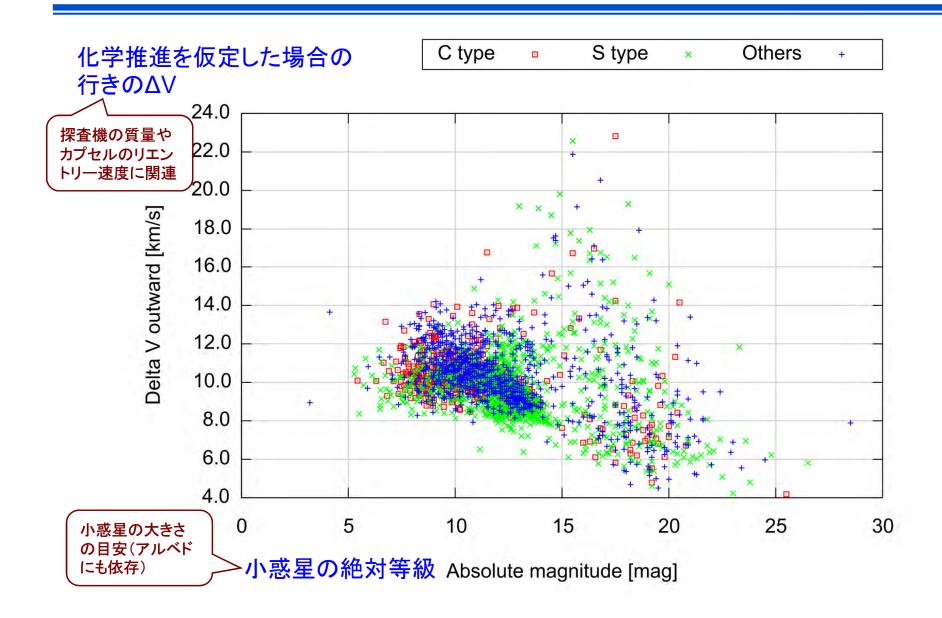
ミッションターゲットが1999 JU3しかないこと

- ミッション目的がサンプルリターンであるので、探査機が往復可能な軌道にある天体である必要がある(ΔVが十分に小さい)。同時に、カプセルのリエントリー速度にも制限がある。「はやぶさ2」として仮定する探査機の規模は「はやぶさ」と同等であるため、イトカワ的な軌道のみが対象となる。
- 小惑星のスペクトル型、自転周期や自転軸の向き、大きさ、形状、表面の反射率などの物理データが分かっている必要がある。特に、<u>自転周期は着陸の可</u>否にとって重要であり、自転周期が短いものは不可。
- ●「はやぶさ2」のミッション定義より、より始原的な天体の探査を行うことが理学的な目標となっている。具体的には、スペクトル型がC型の小惑星である必要がある。(S型の小惑星はすでに「はやぶさ」で探査したので理学的な新規性に欠ける。また、より始原的であるD型小惑星については、宇宙検疫の問題があり、現時点ではハードルが高い。)
- 以上を考慮すると、現時点では候補となる天体は、1999 JU3のみとなる。

探査対象天体絞り込みの過程

•探査機質量

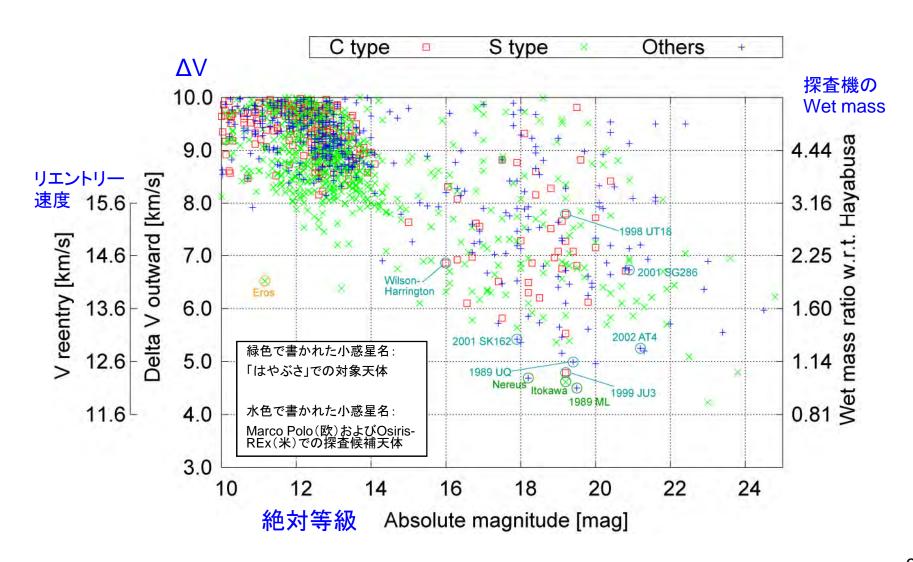
•リエントリー速度:12km/s以下


:600kg以下

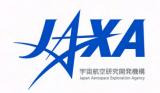
探査対象天体絞り込みの過程-【図1】

参考資料

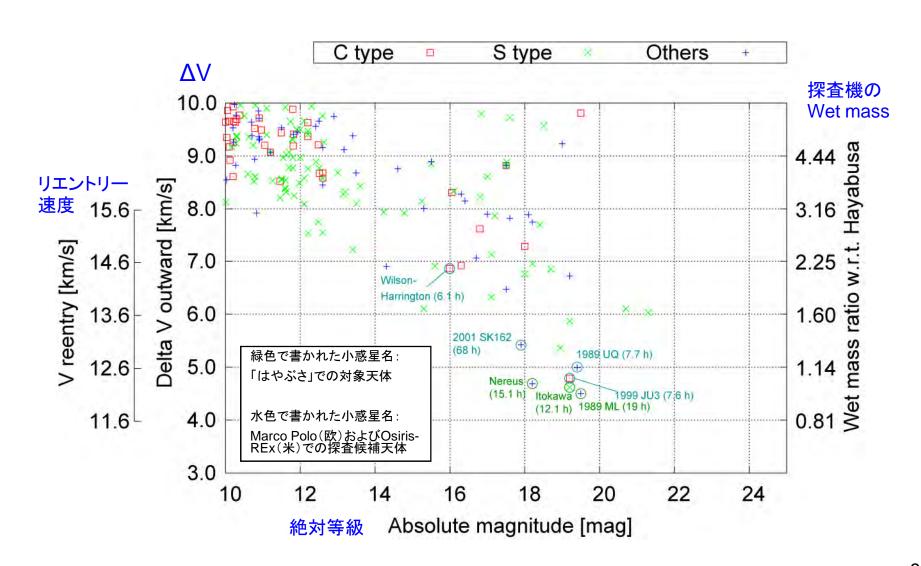
スペクトル型が分かっている3000個の小惑星



探査対象天体絞り込みの過程-【図2】 参考資料 スペクトル型が分かっている3000個の小惑星

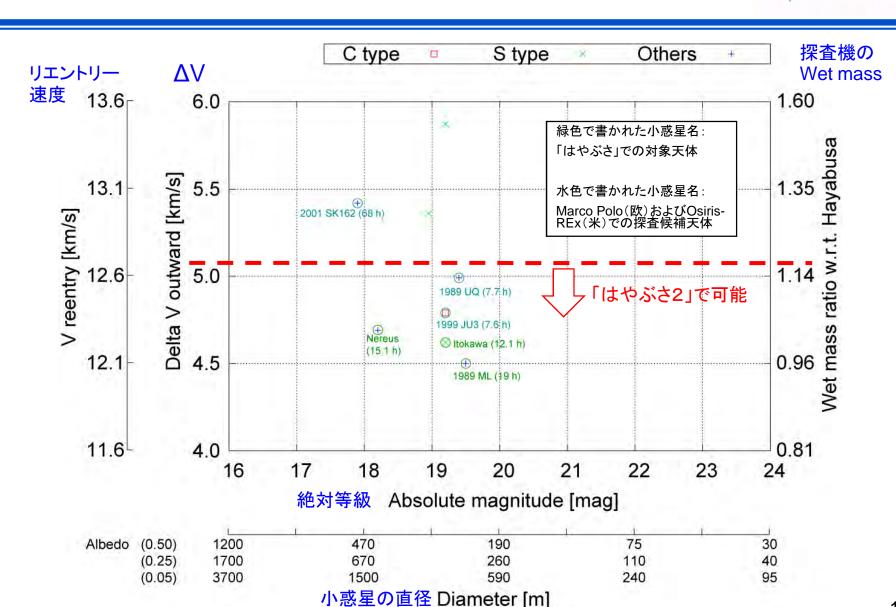


(△V < 10、10 < mag < 25)の部分の拡大



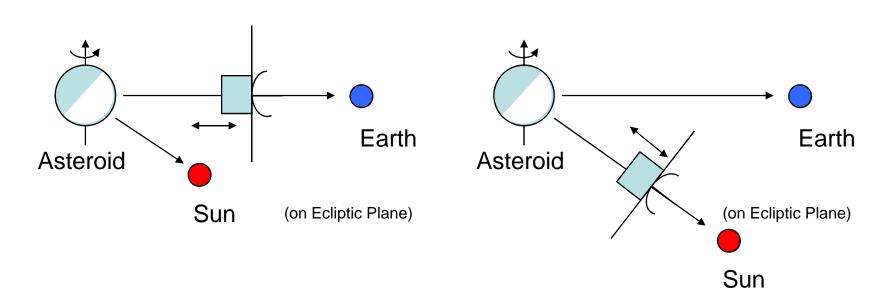
参考資料

探査対象天体絞り込みの過程-【図3】


図2で自転周期が6時間以上のものをプロット

探査対象天体絞り込みの過程-【図4】

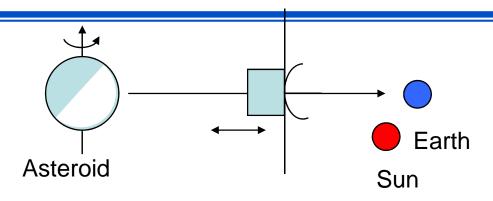
参考資料


図3で、(4 < ΔV < 6、16 < mag < 24)の部分の拡大

1999 JU3への打ち上げ好機が2014(H26)年であること

- 1999 JU3は、黄道面に対して、自転軸が横倒しに近いため、小惑星・探査機・太陽・地球の幾何学的位置関係によっては、永久日陰地域や地球からの永久 非通信可能地域が存在する。仮に、タッチダウンできる地域がそのような場所 にあった場合には、タッチダウンが行えないというリスクがある。
- タッチダウン時の影の付き方も、ミッションごとに異なり、ナビゲーションにとって リスクとなる場合もある。
- 2014(H26)年の打ち上げウインドウは、小惑星に到着してからの条件がよいが、 2019(H31)年打ち上げでは、天体の幾何学的配置がよくない。
- 探査にとって次によい打ち上げウインドウは2024(H36)年に地球軌道を離脱するものとなり、2014(H26)年からは10年後となり、コミュニティーの維持は不可能となる。

太陽-対象天体-地球間の角度(SPE角)が大きい大人 降下・着陸運用に大きなリスクが存在する



戦略-A:地球指向降下 戦略-B:太陽指向降下

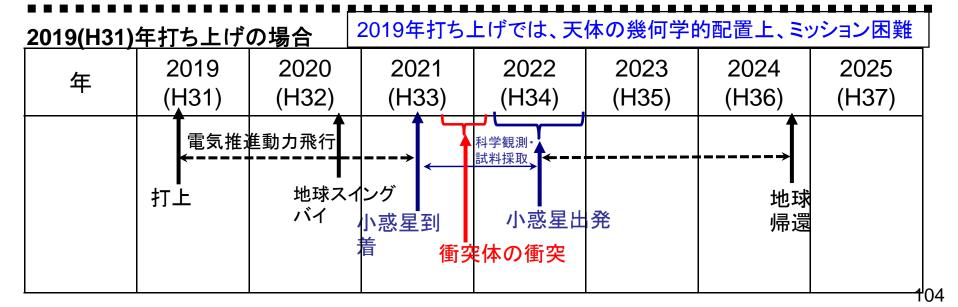
電波情報で小惑星中心相対の航法情報は得られるが、太陽-対象天体-地球間の角度(SPE角)が大きいと、地形航法(レーザ高度計、地形情報)を校正できないため、リハーサルによる方策の確立は難しく、降下・着陸運用の信頼性は低く、リスクが高い。

参考資料

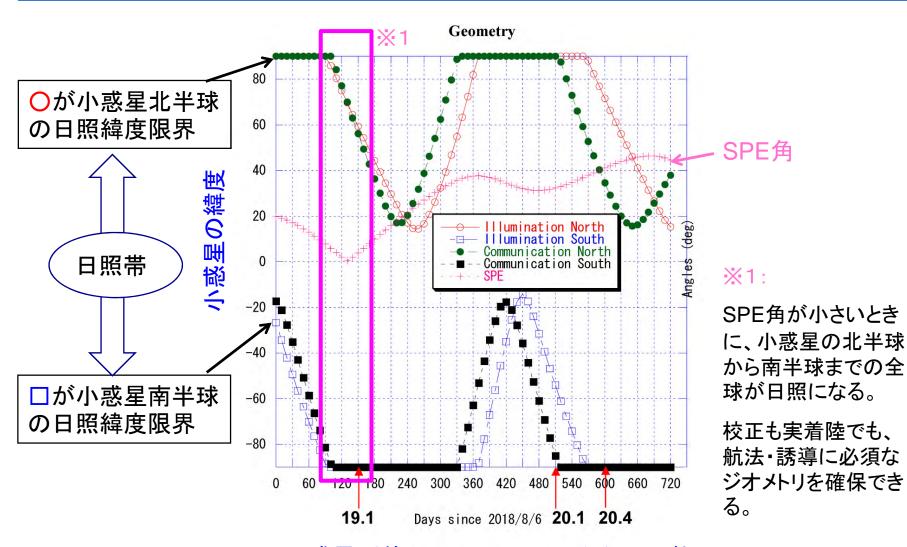
永久日陰、永久交信不能域が存在すると、 降下・着陸運用に大きなリスクが存在する/

(太陽-対象天体-地球間の角度が小さい場合.)

(on Ecliptic Plane)

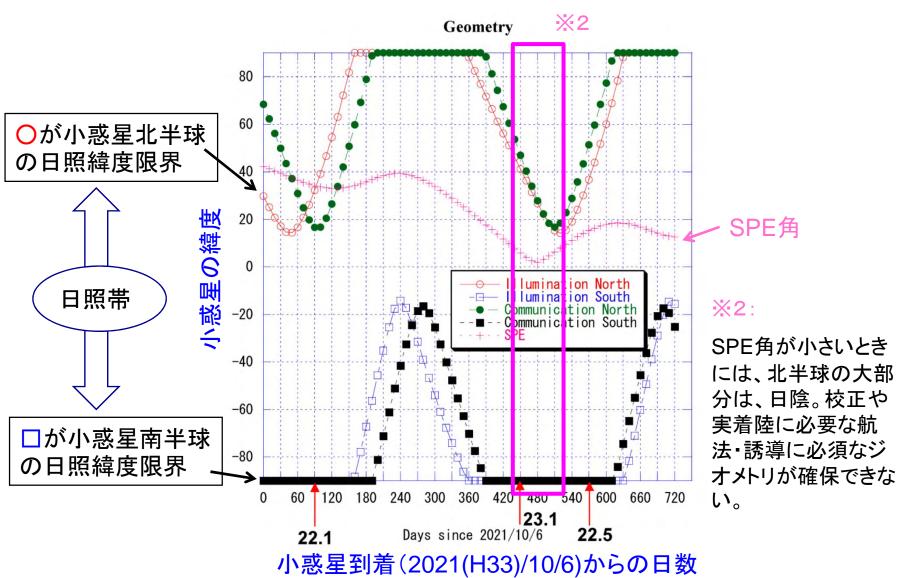

- レゴリス集積地域が存在する場合、極域に偏在している可能性がある。
- 永久日陰地域や、永久交信不能域への降下着陸は困難である。
- 片方の極については、日陰、交信域の確保は時期を選べば可能だが:
 永久日陰、永久交信不能域が存在すると、(太陽-対象天体-地球間の角度が小さくても、)特徴地形が、自転に連れて出現・消失するほか、影の伸縮が大きく、地形航法を妨げ、降下・着陸は困難である。

「はやぶさ2」ミッションシナリオ

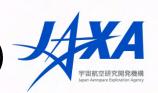


2014(H26)年打ち上げの場合

年	2014	2015	2016	2017	2018	2019	2020
	(H26)	(H27)	(H28)	(H29)	(H30)	(H31)	(H32)₄
	打上	地球ス バイ		動力飛行/	科学観 ★ 試料採 ・ 試料採 ・ 認星到 f f	1 4	帰還



^{参考資料}2014(H26)年打ち上げ(2015(H27)年地球軌道離脱)の場合


小惑星到着(2018(H30)/8/6)からの日数

2019(H31)年打ち上げ(2020(H32)年地球軌道離脱)の場合

参考資料

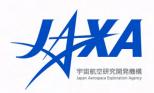
世界の太陽系小天体探査(1/2) (1/2)

19	80 19	990 20	00 2	010
フライバイ	1986<ハレー彗星> ベガ1号・2号、さきがけ、すいせい、ジ オット、ICE 1985<ジャコビニ・ツィナー彗星> ICE	1991 <ガスプラ>ガリレオ 1992 <グリグ・シェレルプ彗 星>ジオット 1993 <イダ>ガリレオ 1996 <マチルダ> ニア・シューメイカー 1999 <ブレイユ> ディープ・スペース1	2001<ボレリー彗星> ディープ・スペース1 2002<アンネフランク> スター・ダスト 2008<シュテインス> 2010<ルテティア> ロゼッタ ● 2004<ビルト2彗星> スター・ダスト 2005<アンペル1彗星>	2015<写王星> ニューホライイズ ンズ 2011<テンペル1> NExT 2010<ハートレイ2 >EPOXI
衝突			ディープ・インパクト	2019 <1999 JU3>はやぶさ2
ランデブー・ 着陸	※年は天体に到着した(する)年を示		2000<エロス> ニア・シューメイカー	2014 < チュルモフ・ ゲラシメンコ > ロゼッタ 2011 < ベスタ > 2015 < セレス > ドーン
サンプル リターン	一※この他、火星衛星のフライバイ等	あり 	2005<イトカワ>はやぶさ (2010年帰還) **2004<ビルト2彗星> スター・ダスト(2006年帰還)	2018 <1999 JU3> はやぶさ2

*はやぶさ2以外は、過去・現在に宇宙で運用されている探査プロジェクトのみを記載。

世界の太陽系小天体探査(2/2) (2/2)

天体	国	探査機	図	結果および状況
冥王星・ EKBO	米	New Horizons		フライバイ 2015(H27)年に冥王星・キロンをフライバイ観測。 その後、EKBOフライバイを目指す。
小惑星	日	はやぶさ		ランデブー&着陸&サンプルリターン 2005(H27)年6月小惑星イトカワ到着、2010(H22) 年6月地球帰還。
	米	Dawn	Colon Page 1998	ランデブーx2 2011(H23)年にベスタ、2014(H26)年にセレスに ランデブー。
彗星	欧	Rosetta /Philae		ランデブー&着陸 2008(H20)年シュテインス、2010(H22)年ルテティア、フライバイ。2014(H26)年にチュリュモフ・ゲラシメンコ彗星到着、着陸。
	米	Stardust > NeXT		フライバイ&サンプルリターン 2011(H23)年テンペル第一彗星フライバイ。ヴィルド第二彗星フライバイ時に彗星塵を採集後、 2006(H18)年1月、地球帰還。
	米	Deep Impact >EPOXI		フライバイ&インパクタ 2005(H17)年テンペル第一彗星核に子機を衝突。 2010(H22)年ハートレイ第二彗星フライバイ。



(1)概要

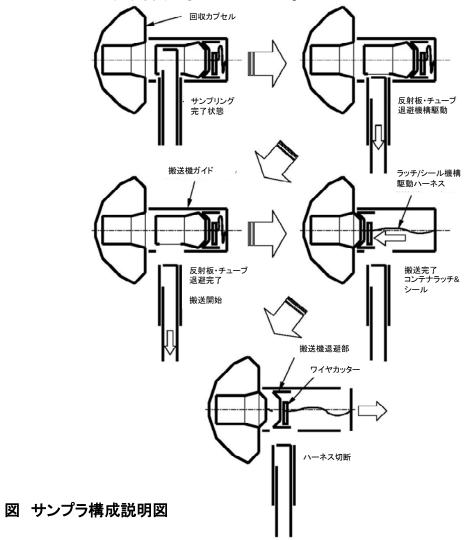
機能:サンプラは小惑星表面の試料を採取するサブシステムである。

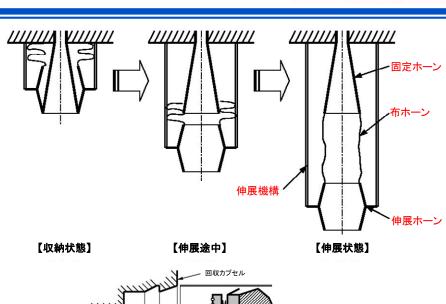
構成:以下の通り。 サンプラシステム サンプリング部 プロジェクタ部 ホーン部 コンテナ部 ロンチロック機構 プロジェクタ(銃身) ガス採取IF サンプルキャッチャ部 ウィットネスプレート 固定ホーン プロジェクタイル ウィットネスプレート 反射板回転機構 背面アブレータ側・・・ 布ホーン 火薬室 ラッチ機構 反射板・チューブ退避機構 発火確認温度センサ ラッチ確認用センサ ホーン伸展機構 ヘリカルスプリング キャッチャ搬送機構 シール機構 搬送機退避機構 イジェクタガード イジェクタガード展開機構 搬送機ガイド 伸展ホーン ワイヤカッター 先端折り返し部 図 サンプラ構成ブロック図

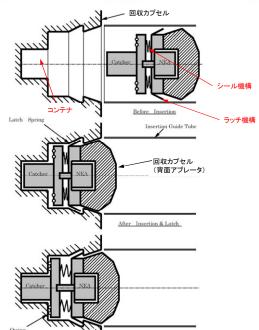
LRF-S2用リフレクタ

(2)構成

構成は、基本的にはやぶさと同じ。収量増加のための弾丸部の改良を行う。






図(参考)はやぶさのサンプラ外観図(はやぶさ2はサンプラは同形状)

構造もはやぶさと同一構造であるが、ガスの採取などを強化するための密閉度の強化している。

After Seal(NEA Driven)

(3)仕様

(a) 機能:小惑星表面の試料を採取できること。

(b) 質量: 8.9kg-0.5kg +2.5kg

(c) キャッチャ体積:約60cm³

(d) プロジェクタ仕様

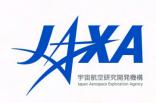
プロジェクタの材質:SUS(暫定)

プロジェクタ発射管:78g,火薬室質量:50g(暫定)

プロジェクタ総質量:~150 g(暫定)

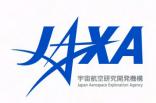
プロジェクタ全長:~153mm(暫定)

(サボプロジェクタイル,火薬,衛星との接続用コネクターなど含む)


(f)射出可能弾丸数として3弾を有すること。

性能:射出速度約300m/s,回転速度300rps(暫定)

形状:円錐+円筒形状(暫定)


材質:タンタル

略語表(1/2)

ACM	Accelerometer	加速度計
AOCP	Attitude & Orbit Control Processor	姿勢軌道制御演算処理装置
AOCU	Attitude & Orbit Control Unit	姿勢軌道制御装置
APM	Antenna Pointing Mechanism	アンテナ指向機構
APR	Array Power Regulator	
BAT	Battery	バッテリー
CMD	Command	コマンド
CAM-C	CAMera Controller	カメラコントローラー
DCAM	Deployable CAMera	分離カメラ
DE	Digital Electric	デジタル回路
EDISON	_	衛星運用工学データベースの名称
EPNAV	_	電気推進による探査機誘導計画立案ソフト
HGA	High Gain Antenna	高利得アンテナ
IRU	Inertia Reference Unit	慣性基準装置
Ka	Ka-band	Ka通信带
KaSW	Ka-band Switch	Ka帯スイッチ
KaTRP	Ka-band Transponder	Ka帯中継器(トラポン)
LGA	Low Gain Antenna	低利得アンテナ
LRF	Laser Range Finder	レーダーレンジファインダー
MASCOT		小型ランダ
MGA	Middle Gain Antenna	中利得アンテナ

略語表(2/2)

NIRS	Near InfraRed Spectrometer	近赤外分光計
PA	Preamplifier	プリアンプ
PCU	Power Control Unit	電力制御器
QL	Quick Look	テレメトリ表示装置
RCS	Reaction Control System	推進系
RW	Reaction Wheel	リアクションホイール
RX	Reception	受信(回路)
SAP	Solar Array Panel	太陽電池パドル
SCI	Small Carried Impactor	衝突装置
SIB	Satellite Information Base	衛星情報データベース
SIRIUS	-	科学衛星テレメトリデータベースシステム
STT	Star Tracker	スタートラッカー
SW (SWT)	Switch	スイッチ
TLM	Telemetry	テレメトリ
ТМ	Target Marker	ターゲットマーカー
TRP	Transponder	中継器(トラポン)
TX	Transmission	送信(回路)
XDIP	Xband Diplexer	ダイプレクサ、分波合波回路
XSW (XSWT)	X-band Switch	X帯スイッチ
XTRP	X-band Transponder	X帯中継器(トラポン)