

付表-1

基本指針に対する全体設計・検証結果

注記1)表中のハザードレポートの識別の意味は以下のとおりである。

なし:8.2項(ISS共通的な制御方法により検証した事項)に関するハザードレポート

●:8.3項(MCEに特徴的な制御方法により検証した事項)に関するハザードレポート

付表-1 基本指針に対する全体設計・検証結果 (1/12)

JEM 基本指針(平成 8 年)	【参考】国際宇宙ステーションの日本の実験棟(JEM)の安全設計について(報告) (平成 11 年 7 月 7 日)	ポート共有実験装置安全検証結果
3.基本的な考え方 JEM の安全確保のため、以下の基本的な考え方に従っ て十分な安全対策を講じ、リスクを可能な限り小さくすること とする	1.基本的考え方	1.基本的考え方 (ハサ゚ート [*] 制御の基本となるもの)
(1)安全確保の対象 宇宙ステーションは、人間をその構成要素として含むシステムであり、搭乗員の死傷を未然に防止するため、安全確保を図ることとする。	(1)安全確保の対象 JEM においては、以下に述べるとおり、直接搭乗員に被害を与えるハサート(事故をもたらす要因が顕在又は潜在する状態)及び安全に関わるシステムに被害を与えることにより間接的に搭乗員に被害を与えるハサートが考慮され、搭乗員の死傷を未然に防止するための安全確保が図られている。	一般的事項 (左記のとおり実施している)
(2)安全確保の方法 JEM の開発及び運用においては、すべてのハサー・・を 識別し、以下の優先順位に従ってハサー・・を制御し、残存ハサート・のリスクを評価することとする。	(2)安全確保の方法 JEM においては、有人活動の特殊性を配慮して安全設計を行うことを基本的考え方とし、次のとおり、ハザー・トを識別し、優先順位に従い、ハザー・トの制御、残存ハザー・トのリスク評価が行われている。	一般的事項 (左記のとおり実施している)
ア ハザートの除去 ハザート、の除去 イリスクの最小化設計 故障許容設計、適切な部品・材料の選定等により、リスク が最小となるようにする。	ア ハサート・の識別 対象となるシステム及びその運用について、ハート・ウェア、ソフトウェア、運用・誤動作等のヒューマンエラー、インターフェース、環境条件等を考慮して、予測可能なすべてのハサート・及びその原因が故障の木解析(FTA)・故障モート・影響解析(FMEA)を活用した安全解析により識別されている。	
り 安全装置 異常が発生したとしても被害を最小限にするように、安 全装置を付加する。	イ ハザードの除去・制御 ハザードについては可能な限り除去するが、困難な場合には、①リスク低減設計、②安全装置、 ③警報・非常設備等、④運用手順、⑤保全の優先順位でハザードの制御が行われる。	
エ 警報・非常設備等 異常が発生した場合には、警報が作動し、また、万一緊 急の措置を要す事態に至った場合には、緊急警報が作動 して、搭乗員に異常を知らせる。	設定されたハサ・ト・制御の有効性は、①試験、②解析、③検査、④デモンストレーションのいずれか、 あるいは組み合わせによって確認される。	
さらに、異常の発生に備えて、非常設備及び防護具を備える。 オ運用手順 リスクが最小となるような運用手順を整備する。	ウ 残存ハザードのリスク評価 残存ハザードのリスクは、被害の度合い及び発生頻度のマトリクスで評価され、十分低いレベルに制 御されていることが確認される。	
カ 保全 適切な予防保全により、異常の発生頻度を小さくする。		
(3)有人活動の特殊性への配慮 JEM は、自然環境及び誘導環境から搭乗員及び安全に 関わる機器を保護するために、十分な構造上の強度、寿 命等を有するとともに、安全に関わるシステムの故障(誤操作 を含む。)に対する適切な許容度の確保、容易な保全等が できるようにする。 また、火災、爆発、危険物等による異常の発生の防止並 びに外傷、火傷、感電等の傷害及び疾病の発生の防止を 図るとともに、緊急対策に十分配慮する。		一般的事項(左記のとおり実施している)
4.宇宙環境対策 JEM は、宇宙における自然環境並びに打上げ時及び軌道上における誘導環境から搭乗員及び安全に関わるシステムが保護されるようにしなければならない。このため、以下のような対策を講じる必要がある。	2.宇宙環境対策 JEM は、宇宙における自然環境並びに打上げ時及び軌道上における誘導環境から搭乗員及び安全に関するシステムを保護するため、以下の対策が講じられている。	2. 宇宙環境対策 ポート共有実験装置は、宇宙における自然環境並びに打上げ時及び軌道上における誘導環境から搭乗員及び安全に関するシステムを保護するため、以下の対策が講じられている。
(1)自然環境からの保護 ア 隕石・スペースデブリ 隕石・スペースデブリの衝突により、JEM の安全に関わるシ ステムが損傷し、搭乗員が危険な状態とならないよう、可能 な限り防御すること。 なお、万一隕石・スペーステブリが JEM に衝突した場合に	(1)自然環境からの保護 アメテオロ仆、スペースデブリ メテオロ仆、流星物質)、スペースデブリ(宇宙機システムから発生する人工物体)(以下「デブリという。) の衝突により、JEMの安全に関わるシステムが損傷し、搭乗員が危険な状態とならないよう、次の とおり可能な限りの防御対策がとられている。	(1)自然環境からの保護 ポート共有実験装置に対しては該当機能がないため適用外とする。
は、JEMから宇宙ステーション本体への退避により、搭乗員の安全確保を図ること。	(注)ISS では、安全上重要な与圧モジュール(船内実験室、船内保管室)の構造については、全体で配慮する必要があるので、デプリ衝突時にモジュール壁を貫通しない確率(非貫通確率:PNP、Probability of No Penetration)が規定されており、JEM の与圧部(船内実験室)と補給部与圧区(船内保管室)とを合わせた PNP 要求値は、0.9738/10 年となっている。	
	①直径 1cm 以下のデプリ スタッフィング入りパンパ(米国 NASA で提案されたセラミック材/炭素複合材料(Nextel/Kevlar)からなるスタッフィング(充填材)を外側バンパと与圧壁の間に設置したバンパ)による貫通防御対策が実施されている。	
	②直径 10cm 以上のデプリ 事前に地上観測結果を使用して、デプリの存在・軌道要素を把握し、衝突の危険性がある場合は、ISS の軌道制御により衝突回避する。	
	③直径 1~10cm のデプリ 衝突により与圧モジュール(船内実験室、船内保管室)をデプリが貫通した場合、搭乗員は隣のステ ーション本体側モジュールに退避しハッチを閉めることとしている。デプリ貫通による与圧モジュール(船内 実験室、船内保管室)損傷直径とステーションの与圧モジュール(船内実験室、船内保管室)全体の減 圧時間の関係は別表(略)に示すとおりである。	

付表-1 基本指針に対する全体設計・検証結果 (2/12)

	「	「・快祉桁未 (2/12 <i>)</i>
JEM 基本指針(平成 8 年)	【参考】国際宇宙ステーションの日本の実験棟(JEM)の安全設計について(報告) (平成 11 年 7 月 7 日)	ポート共有実験装置安全検証結果
	なお、現在、直径 10cm 以下のデブリについても認識できるよう、地上観測能力の向上、データへ ース充実に向けて努力がなされており、ISS/JEM 運用までに、国際的協力の下、デブリによる搭乗員の危険を低下させることが期待されている。	
	〈関連ハザードレポート〉 NASDA-1JA/1J-0009 隕石/デブリとの衝突	
イ宇宙放射線 JEMの安全に関わる機器は、放射線による誤動作、故	イ 宇宙放射線	イ 宇宙放射線 ポート共有実験装置を構成する部品及び材料のうち、放射線の影響が懸念されるものについては、放射線による誤動作、故障及
では、	ISS が運用される高度約 400km、軌道傾斜角 51.6 度の軌道においては、機器及び搭乗員は、 太陽系外から飛来し鉄等の重粒子成分を含む銀河宇宙線、太陽フレアーで発生する太陽放射 線、地球磁気圏に定常的に捕捉されている捕捉放射線により被ばくする。	が一下代名美級装置を構成する時間がある。放射線の影響が恋恋されるものについては、放射線による誤場で、破障及び性能劣化を生じないよう、適切なシールドの設置、放射線照射試験による耐性確認、トータルドーズ及びシングルイベントに対する解析評価等、対策を講じ、ポート共有実験装置としての耐放射線性が、評価確認されている。
	このため、JEMの安全に関わる機器については、これらの放射線による誤動作、故障及び性能劣化を生じないよう、耐放射線部品、放射線シール・、ソフトウェア改善(エラー検出訂正等)等、可能な限りの対策を講じ、JEMとしての耐放射線性が評価・確認されている。 また、与圧モジュール(船内実験室、船内保管室)内の搭乗員については、ISSでは造血器官(深さ	
	5cm の線量当量)に対する被ばくが年間 400mSv(40rem)を越えないことが設計要求とされている。	
	JEM の与圧部(船内実験室)・補給部与圧区(船内保管室)は、外壁にアルミを使用し、外壁の外側にはアルミ製のデブリシールド、多層断熱材が設置され、また、与圧部(船内実験室)内の外壁内側には機器を搭載したラック、艤装品が設置され、放射線の遮蔽に寄与している。これらの対策により、与圧部(船内実験室)・補給部与圧区(船内保管室)内の搭乗員に対する	
	被ばく量は、ISS 設計要求値内に抑えられることが解析により確認されている。なお、運用に当たっては、太陽フレア等の突発的な現象に備え、太陽活動の観測や ISS 船内・船外における宇宙放射線計測を実施し、搭乗員の被ばく量を定常的に把握する計画となっている。	
	さらに、搭乗員個人の被ばく量を計測・記録し、宇宙放射線被ばくのリスクを耐容・容認可能なレヘルに保つため、搭乗期間及び船外活動(EVA)の期間を適切に管理することにより、生涯に受ける総被ばく量及び一定期間内に受ける臓器・組織の被ばく量を制限する計画となっている。今後は、銀河宇宙線に含まれる鉄等重粒子イオン被ばくや、その外壁等におけるフラグメンテーション等による2次放射線被ばくの影響、人体内の臓器毎の線量の評価方法等についても研究が進められる予定となっている。	
	〈関連ハサ゛ート゛レホ゜ート〉 NASDA−1JA/1J−0020 過度の電離放射線(JEM 隔壁による制御)	
ウ 高真空、微小重力等 	ウ 高真空、微小重力等 ①高真空 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	ウ 高真空、微小重力等 ① 高真空
原子状酸素等の環境に対して、搭乗員の安全及び安全に関わる機器の正常な動作を確保できること。 また、与圧部(船内実験室)に設置される安全に関わる機器は、減圧に耐え、再加圧後正常に動作すること。	与圧部(船内実験室)・補給部与圧区(船内保管室)は、搭乗員が高真空の環境に曝されないよう、ISS 本体側の全圧制御による内部圧力を維持する設計となっている。 曝露環境に設置される機器は、高真空に曝されるため、地上との気圧環境の差異を考慮した設計とされており、環境試験により高真空下での耐環境性が確認されている。(減圧・再加圧については、6(3)参照。)	曝露環境に設置されるポート共有実験装置は、高真空に曝されるため、地上との気圧環境の差異を考慮した設計とされており、環境試験により高真空下での耐環境性が確認されている。
	②微小重力	② 微小重力
	微小重力 微小重力下での、物体の浮遊による搭乗員への衝突や挟み込みを防止するため、JEM に持 ち込まれ又は取り外される機器は、仮置き時に拘束器具が取付け可能で、搭乗員による取り 扱いの作業手順が適切に設定されている。 また、微小重力下で搭乗員が作業を行う場合には、自身の足を固定できるよう、適切な箇所 に足部固定具が設置可能となっている。	ポート共有実験装置近傍において、微小重力下で搭乗員が作業(FRGF(ロボットアーム把持機構)、HCAM(HTV ペイロード把持機構)リリース等)を行う場合には、共通手順であり、自身の足を固定できるよう適切な箇所に足部固定具が設置可能となっている。
	③プラズマ 軌道上の太陽光線、高速荷電粒子の衝突により発生するプラズマは、機器を帯電させ、機器 の性能劣化・故障を引き起こすおそれがあるため、機器・構造物・熱制御材等に対し電気的接 地の確保・帯電防止が行われている。	③プラズマ 軌道上の太陽光線、高速荷電粒子の衝突により発生するプラズマは、ポート共有実験装置を帯電させ、機器の性能劣化・故障を引き 起こすおそれがあるため、機器・構造物・熱制御材等に対し電気的接地の確保・帯電防止が行われている。打ち上げ前に各電気的結 合部の抵抗を測定することで確認している。
	④高温·低温 搭乗員が地上に比べて厳しい軌道上の熱環境に曝されないよう、与圧部(船内実験室)・補給	④高温•低温
	部与圧区(船内保管室)の内部では、JEM の環境制御機能により、搭乗員が軽装で活動できる 温度環境が提供される。 また、軌道上の熱環境により、機器の性能劣化・故障が生じないよう、打上げから全運用範囲 にわたって、各機器の温度を許容温度範囲に保つため、多層断熱材による保温、冷却ループに よる冷却、ヒータによる加熱等の対策が講じられている。	ポート共有実験装置は、軌道上の熱環境により、機器の性能劣化・故障が生じないよう、宇宙空間との熱の授受、最低・最高温度等を解析により、多層断熱材による保温、ヒータによる過熱等の対策が、十分であることを検証した。なお、実機の熱平衡試験を実施し、予測温度を検証している。
	参考:(JEMシステムでの制御方法) 搭乗員が地上に比べて厳しい軌道上の熱環境に曝されないよう、船内実験室・船内保管室の内部では、JEMの2台の空気調和装置等の環境制御機能により、搭乗員が軽装で活動できる温度環境が提供でることを、受入試験にて確認している。 宇宙空間との熱の授受、最低・最高温度等を解析により、多層断熱材による保温、冷却ループによる冷却、ヒータによる過熱等の対策が、十分であることを検証した。なお、与圧部(船内実験	
	室)については、要素試験により、また、補給部与圧区(船内保管室)については、実機の熱平衡試験を実施し、予測温度を検証している。	
	⑤酸素原子 紫外線により解離生成される酸素原子は、有機材料・金属の表面の材料特性を変化させる	⑤酸素原子 紫外線により解離生成される酸素原子は、有機材料の表面の材料特性を変化させるため、REXJの該当部においてはゲルマニウ
	ため、影響を受ける部分に対しては、適切な材料の選定、表面処理、多層断熱材等による防護	ムシートを貼付して対応した。

付表-1 基本指針に対する全体設計・検証結果 (3/12)

IFM 甘木比红(亚ch o 左)	「全来 国際中央7年 シンの日本の中段情(ICM)の中央記録について(報告)	+** し サ ち 中 野 壮 平 ウ 人 か 計 休 田
JEM 基本指針(平成 8 年)	【参考】国際宇宙ステーションの日本の実験棟(JEM)の安全設計について(報告) (平成 11 年 7 月 7 日)	ポート共有実験装置安全検証結果
	対策が講じられている。 (電磁波については、(2)イ③(ウ)参照)	
	NASDA-1JA/1J-0005 減圧 NASDA-1JA/1J-0011, NASDA-2JA-0011 固定されていない機器との衝突(軌道上)	
	NASDA-1JA/1J-0023 隔離/退避不能 NASDA-1JA/1J-0026,NASDA-2JA-0026 不適切な船外活動(EVA)移動支援具	
	NASDA-ICS-0011 固定されていない機器との衝突(軌道上)	
(2)誘導環境からの保護	(2)誘導環境からの保護	(2)誘導環境からの保護
ア 打上げ時の誘導環境 構造及び安全に関わる機器は、打上げ時における振動、 加速度、音響、圧力等の誘導環境について、スペ゚ースシャトル 搭載時の諸条件に耐えられること。	ア 打上げ時の誘導環境 JEM の構造・機器は、打上げ時の誘導環境に基づいてスペースシャトル内の JEM の搭載位置に応じた振動・加速度・音響・圧力等の諸条件に対して、構造破壊・劣化等を起こさないよう設計マージンが確保されている。	ア 打上げ時等の誘導環境 ポート共有実験装置は、打上げ時の誘導環境に基づいて HTV 内の搭載位置に応じた振動・加速度・音響・圧力等の諸条件に対し て、構造破壊・劣化等を起こさないよう、以下のように設計、検証されている。打ち上げ固定機構は、打ち上げ時の環境(振動・熱環 境)や他の電カラインから回り込みによる誤作動がないよう接地されていることを確認している。また、SIMPLE の IEM—HU は 4 つの 打ち上げ固定機構で固定されており、打ち上げ荷重(安全係数:1.4)に対して 2 つでも安全余裕は正であることを確認している。 詳細は本表3項に示す。また MCE,HDTV-EF についてはベントポートの開口面積から、きぼうの緊急減圧時に差圧が発生することは なく、機器の破壊によるきぼうや搭乗員の損傷は起きない設計としている。REXJについては、減圧解析により最大差圧に対する強 度を持たせた設計としている。
		・剛性設計・強度設計・疲労強度設計
		〈関連ハザードレポート〉 MCE-01 構造破壊(8.2 項①) UNQ-IMAP-GLIMS-1 構造破壊(8.2 項①) REXJ-001 構造破壊(8.2 項①) SIMPLE-UNQ-1 構造破壊(8.2 項①) UNQ-HDTV-1 構造破壊(8.2 項①)
		●REXJ-002 アームの構造破壊(打上げ時)(8.2 項①)及びアーム破断後の浮遊(8.3 項(2)) ●REXJ-004 打上げ固定機構の故障による機器の衝突(8.3 項(1)) ●SIMPLE-UNQ-5 打上げ固定機構の故障による機器の衝突(8.3 項(1))
		STD-IMAP-GLIMS-2 シール機器の減圧による破壊(8.2 項②) STD-REXJ-3 ベントポートを有する機器の減圧による破壊(8.2 項③)
イ 軌道上の誘導環境 (ア)雰囲気空気	イ 軌道上の誘導環境 ①雰囲気空気	イ 軌道上の誘導環境
耐熱は主味 で表演し、一般化炭素濃度、一般化炭素濃度、気圧等の 環境については、宇宙ステーション本体の機能に依存するが、 JEMにおいても異常を搭乗員に知らせること。 また、搭乗員の安全に影響を及ぼさないよう、温度、湿度 及び気流を適切に制御するとともに、微生物及び微粒子 を適切に除去すること。	(関連ハサ・ート・レホ・ート) NASDA-1JA/1J-0004 環境空気悪化(温度、湿度、空気組成)	①分四X(主X)
	(ア)酸素等の濃度 JEM 内循環空気は、通常時、JEM と隣接するモジュール間に設置されたファンでの通風換気により ISS 本体に送られ、ISS 本体側で酸素分圧の制御、二酸化炭素・一酸化炭素等の除去が行われる。	(ア)酸素等の濃度 ポート共有実験装置に対しては該当機能がないため適用外とする。
	これらの成分の監視は、ISS 本体において行われ、二酸化炭素・酸素分圧の異常等が検知された場合、ISS 内に警告・警報が発せられ、JEM 内の搭乗員にも知らされる。 JEM においては、与圧部(船内実験室)では供給側と排出側に各々1つのファンを設置しており、 片側が停止しても JEM と隣接するモジュール間の通風換気が可能な設計となっている。補給部 与圧区(船内保管室)では1つの循環ファンで与圧部(船内実験室)と通風換気しており、ファン停止 時には与圧部(船内実験室)に退避する。 なお、与圧部(船内実験室)・補給部与圧区(船内保管室)のファンの故障は検知することができ、 ファンの停止等により搭乗員に危険が及ぶ場合は、隣接するモジュールに退避する。	
	(イ)気圧 軌道上運用で ISS の内圧は 1 気圧に維持され、平常時は ISS 本体から通風換気により JEM に空気が送られ、JEM 内の圧力及び空気成分が制御される。 通常運用時、JEM と ISS 本体を隔てるハッチは開放されており、JEM 内の急激な減圧は ISS 本 体で検知され、JEM 内に警告・警報される。	(イ)気圧 ポート共有実験装置に対しては該当機能がないため適用外とする。
	(ウ)温度、湿度 JEM の温湿度は、独立した 2 台の空気調和装置によって制御され、1 台が停止しても、他の 1 台の運転により、温度・湿度を基準内に制御できる設計である(与圧部(船内実験室)内で温度 18.3~26.7°C、湿度 25~70%の範囲で設定可能)。	(ウ)温度、湿度 ポート共有実験装置に対しては該当機能がないため適用外とする。
	(エ)気流等 JEM 内の搭乗員が滞在するキャビン内では、微小重力下において特定の場所に気体の滞留が生じないよう、ファン容量・回転数・ディフューザ仕様(形状・吹き出し面積・方向・絞り量等)を最適化して人工的に適切な空気流を発生させる。 なお、微粒子・微生物は、空気調和装置組み込みのフィルタ機能により、除去される。	(エ)気流等 ポート共有実験装置に対しては該当機能がないため適用外とする。

付表-1 基本指針に対する全体設計・検証結果 (4/12)

JEM 基本指針(平成 8 年)	【参考】国際宇宙ステーションの日本の実験棟(JEM)の安全設計について(報告) (平成 11 年 7 月 7 日)	ポート共有実験装置安全検証結果
(イ)汚染 有害物質は、使用しないことを原則とするが、使用することが避け難い場合は、搭乗員の安全に影響を与えないこと。 なお、一旦発生したものの低減は、宇宙ステーション本体の機能に依存するが、大量の有害物質が発生した場合には、一旦与圧部(船内実験室)内の空気をJEMの外に排出すること。	②汚染 〈関連ハサ゛ート゛レホ゜ート〉 NASDA -1JA/1J-003, NASDA-2JA-003 環境汚染空気 NASDA-ICS-0003 環境空気汚染	②汚染
	(ア)有害物質の放出防止 JEM においては、ISS 計画で規定された選定基準に従って使用する材料が選定されており、 有毒・危険な化学物質・材料は使用されていない。 構造・内装・搭載機器等に使用される非金属からのオフがスについては、製造・試験段階で必要に応じて部品・機器・フックルベルで、真空環境下での加熱によるがス抜きが行われ、オフがス発生量を ISS で設定される基準レベル内に抑える。	(ア)有害物質の放出防止 ポート共有実験装置に対しては該当機能がないため適用外とする。
	(イ)制御 ISS 内では、搭乗員・実験動物からアンモニア等の代謝生成物が放出されるため、ISS 本体において搭乗員に影響を与えることが想定される放出物質の監視・警報発出・制御が行われる。 JEM の与圧部(船内実験室)内で汚染が発生し、緊急処置が必要となった場合、搭乗員は隣接するモジュールに避難し、ハッチを閉じる。 汚染を ISS 本体側で除去できない場合には、与圧部(船内実験室)内の空気を宇宙空間へ排出して汚染物質を除去する((3)軌道上環境の保全、6(1)ウ汚染参照)。	(イ)制御ポート共有実験装置で使用する電池については、真空試験を実施し漏洩がないことを確認している。 〈関連ハサートレポート〉 STD-HDTV-9.1 電池の破裂・電解液の漏洩(8.2 項④)
(ウ)振動、音響、電磁波 JEMの機器が発生する振動、音響及び電磁波は、搭乗 員及び安全に関わる機器に影響を与えないこと。 また、安全に関わる機器は、宇宙ステーションより発生するこれらの環境に十分耐えられること。	③振動、音響、電磁波 〈関連ハサ・ート・レホ・ート〉 NASDA-1JA/1J-0025, NASDA-2JA-0025 電磁干渉による機器誤動作 NASDA-ICS-0025 電磁干渉による機器誤動作 NASDA-ICS-0027 電波放射	③振動、音響、電磁波
	(ア)振動 JEMシステムの冷却水用ポンプ・真空排気用ポンプ・空調用ファン等の各種回転機器から発生する振動は、微小重力実験に影響を及ぼさないよう抑制されているため、人体・搭載機器に影響を与えるレベルではない。 ISS では、スペースシャトルのドッキング、ISS の軌道変更等から加速度が生じるが、打上げ時の振動環境に比べて小さく、搭乗員・JEM・搭載機器に影響を与えないと考えられる。	(ア)振動 ポート共有実験装置の回転機器から発生する振動は、人体・搭載機器に影響を与えるレベルではないことを解析により確認している。 ISS では、ISS の軌道変更等から加速度が生じるが、これらの荷重にポート共有実験装置の構造が耐えることを解析にて確認している。なお、この荷重は、打上げ時の振動環境に比べて小さいことを確認しているため、ポート共有実験装置に影響を与えない。
	(介音響振動と同様に、真空排気用ポンプ・空調用ファン等の各種回転機器、空調ダクト、バルブ、ノズルから音響が発生するが、ISS計画では、搭乗員に快適な環境を提供できるよう、騒音に対する設計基準が設定され、JEMにもこれを適用している。	(イ)音響 ポート共有実験装置に対しては該当機能がないため適用外とする。
	(ウ)電磁波 ISS の各機器、地上レーダ、スペ [®] ースシャトル、人工衛星等から電磁波が発生するが、ISS 計画では、 電磁干渉によって機器に誤動作等を引き起こさないよう、電磁波を生じる側と受ける側の双方 に対して規定が設けられている。 JEM にもこの規定が適用され、機器レベルからシステム全体にわたって、試験により電磁適合性 (EMC)が確認される。	(ウ)電磁波 ISS 計画では、電磁干渉によって機器に誤動作等を引き起こさないよう、電磁波を生じる側と受ける側の双方に対して規定が設けられている。 ポート共有実験装置にもこの規定が適用され、電磁適合性(EMC)試験により、誤動作等の問題が無いことを確認している。 〈関連ハサ・ト・レホ・ト〉 STD-MCE-8 電磁干渉による機器の誤作動(8.2 項⑤) STD-IMAP-GLIMS-8 電磁干渉による機器の誤作動(8.2 項⑤) STD-REXJ-8 電磁干渉による機器の誤作動(8.2 項⑤) STD-SIMPLE-8 電磁干渉による機器の誤作動(8.2 項⑤) STD-SIMPLE-8 電磁干渉による機器の誤作動(8.2 項⑤) STD-HDTV-8 電磁干渉による機器の誤作動(8.2 項⑤)
(3)軌道上環境等の保全 宇宙空間における不要な人工物体となるものの発生に ついては、合理的に可能な限り抑制するように考慮すること。このため原則として、固体の廃棄物及び短期間に気化 しない液体の廃棄物を軌道上に投棄しないこと。	3)軌道上環境等の保全スペースデブリの発生はISSに対するハサートとなるため、JEMは、構成要素・軌道上交換ユニット等の機器を不意に放出せず、固体の廃棄物及び短期間に気化しない液体の廃棄物を軌道上に投棄しないよう設計されている。 〈関連ハサートレポート〉 NASDA-1JA/1J-0011 NASDA-2JA-0011 固定されていない機器との衝突(軌道上) NASDA-ICS-0011 固定されていない機器との衝突(軌道上)	(3)軌道上環境等の保全ポート共有実験装置は、軌道上で放出しなければならない固体または液体の廃棄物を持たない。
5.構造 JEM の構造は、搭乗員及び搭載機器を宇宙環境から 保護するとともに、安全に支持するため、十分な余裕度を もって設計・開発されなければならない。 このため、以下のような対策を講じる必要がある。	3.構造 搭乗員・搭載機器を宇宙環境から保護し、安全に支持するため、JEM の構造には、以下のような対策が講じられている。	3. 構造 搭乗員・搭載機器を宇宙環境から保護し、安全に支持するため、JEMの搭載機器であるポート共有実験装置の構造には、以下のような対策が講じられていることを検証している。
(1)設計 不測の事態において一つの構造部材が損傷しても、搭 乗員を危険な状態に陥らせないこと。 また、圧力容器(与圧部(船内実験室)構造体及び補給部 与圧区(船内保管室)構造体を含む。)は、リークビフォアラブチャ 又は安全寿命設計であること。	(1)設計 ア 構造設計 ①飛行荷重 打上げ・軌道上・帰還・着陸等の定常運用における全ての荷重モー・に対し十分な剛性・静強 度・疲労強度を持つよう設計され、その結果は解析及び強度試験によって検証され、十分な安	(1)設計 ア 構造設計 具体的な設計内容は(2)剛性・強度の項に示す。 〈関連ハサートレホート〉 MCE-01 構造破壊(8.2 項①)

付表-1 基本指針に対する全体設計・検証結果 (5/12)

JEM 基本指針(平成 8 年)	【参考】国際宇宙ステーションの日本の実験棟(JEM)の安全設計について(報告)	ポート共有実験装置安全検証結果
	(平成 11 年 7 月 7 日) 全性を持つことが確認されている。 ②構造損傷 搭乗員の過失等の不測の原因により JEM の構成機器・ハ・ネル等に構造損傷が生じた場合にも、JEM・搭乗員が直ちに危険な状態に陥ることのないよう、残りの構造で制限荷重まで耐える	UNQ-IMAP-GLIMS-1 構造破壊(8.2 項①) REXJ-001 構造破壊(8.2 項①) SIMPLE-UNQ-1 構造破壊(8.2 項①) UNQ-HDTV-1 構造破壊(8.2 項①)
	も、JEM・指来員が直与に危険な状態に陥ることのないよう、残りの構造で制限何里まで測える 設計となっている。	STD-IMAP-GLIMS-2 シール機器の減圧による破壊(8.2 項②) STD-REXJ-3 ベントポートを有する機器の減圧による破壊(8.2 項③)
		●REXJ-002 アームの構造破壊(打上げ時)(8.2 項①)及びアーム破断後の浮遊(8.3 項(2)) ●REXJ-004 打上げ固定機構の故障による機器の衝突(8.3 項(1)) ●REXJ-006 アーム変形による他機器との衝突(8.3 項(2)) ●SIMPLE-UNQ-5 打上げ固定機構の故障による機器の衝突(8.3 項(1))
		●NCR-MCE-01 接触禁止エリアの設定(クルー荷重による構造破壊(IMAP-GLIMS)、レンズ破損(HDTV-EF))(8.3 項(7))
	イ圧力容器の設計 - 「上力容器の設計 - 「上口の(が) 中央第二人 は別の名吟せに	イ 圧力容器の設計
	与圧部(船内実験室)・補給部与圧区(船内保管室)構造を含む圧力容器は、破裂の危険性に対し十分な安全性を確保するため、次の対応が取られている。	①最大設計圧力(MDP:Maximum Design Pressure)
	①最大設計圧力(MDP:Maximum Design Pressure) JEM は、MDP(かえの漏洩、圧力リリーフ機能損失等、圧力上昇の原因として考えられる故障が2 重に発生した時の最大の圧力)に安全率を掛けた圧力に対し、必要十分な強度を持たせた設計とされている。(安全率については(2)剛性・強度参照。)	ポート共有実験装置の圧力系機器は、リリーフ弁の故障、マスト伸展機構、テラリウム伸展機構故障の2故障を考慮して設定された最大設計圧力に対して安全係数(2.5(ガス容器に対して)、4.0(配管に対して)(いずれも終極))を適用した耐圧設計とし、耐圧試験により検証した。
	②リークビフォアラプチャ 破壊靱性値の高い材料と運用圧力における適切な応力を選ぶことにより、リークビフォアラプチャ設計(容器に許容値を超える長さの亀裂が発生した場合でも、亀裂が貫通してリークが発生することで圧力を下げ、破裂を起こさない設計)としている。	②リークビフォアラプチャ ポート共有装置はリリーフバルブを有しており、リークビフォアラプチャ設計となっている。
	<関連ハザート・レホート> NASDA-1JA/1J-0006 与圧部(船内実験室)の破裂 NASDA-1JA/1J-0007 NASDA-2JA-0007 圧力システムの破裂 NASDA-1JA/1J-0008 負圧による構造破壊 NASDA-1JA/1J-0010 NASDA-2JA-0010 打上げ/上昇/下降時の荷重による構造破壊 NASDA-1JA/1J-0024 NASDA-2JA-0024 軌道上での荷重による構造破壊	〈関連ハサート〉 ●SIMPLE-UNQ-2 圧力系の破裂(8.3 項(4))
	NASDA-ICS-0007 圧力システムの破裂 NASDA-ICS-0010 打上げ/上昇/下降時の荷重による構造破壊 NASDA-0024 軌道上での荷重による構造破壊	
(2)剛性及び強度 ア 剛性	(2)剛性·強度 ア 剛性	(2)剛性·強度 ア 剛性
ア 剛性 JEM の構造は、打上げ時及び軌道上において想定され る環境条件の下で、有害な変形を生じないこと。 また、スペースシャトル搭載時に要求される最低振動数要求 を満足すること。	①有害な変形の防止 JEM には、スペースシャトルによる打上げ・着陸荷重とISS のリプースト、ト・ッキング等による軌道上荷重が負荷されるため、運用中の最大荷重に対し、次の剛性を持つよう設計されている。 (ア)複合した環境条件の下で、結合部を含め構造物に有害な変形が生じない (イ)変形によって構体の隣接部品間等の接触・干渉を生じない	イポート共有実験装置には、打ち上げ、ISS のリブースト等による軌道上荷重が負荷されるため、運用中の最大荷重または HTV との共振を考慮し、次の剛性を持つよう設計した。 (ア)複合した環境条件の下で、結合部を含め構造物に有害な変形が生じない (イ)REX アームについては、変形によって構体の隣接部品間等の接触した場合でも強度余裕があることを確認した。SIMPLE 伸展ストについては軌道上荷重により変形しても、隣接機器と接触せず、また破損しないことを確認した。
	②有害な共振の防止 打上げ・着陸時、軌道上運用時において、JEM とスペースシャトル、JEM と ISS 間での共振により、 過大な荷重が加わり、有害な変形・破壊を起こすことのないに設計されている。	ポート共有実験装置については、フライトモデルに対してモーダルサーベイ試験を実施し、構造数学モデルを検証し解析にて、ハドウェアとの相関性があることを確認した。搭載装置については振動試験にて剛性・強度を検証した。アームを持つ REXJ と SIMPLは、アームの先端にあるIEM-HU やハンドがアーム変形によって隣接部品間等の接触・干渉を生じないか解析により確認した。REについては、ハンド部が衝突されることが予測される部位については、構造解析により衝突荷重に対して強度余裕があることを確認した。
		〈関連ハザ・ト・レホ・ト〉 MCE-01 構造破壊(8.2 項①) UNQ-IMAP-GLIMS-1 構造破壊(8.2 項①) REXJ-001 構造破壊(8.2 項①) SIMPLE-UNQ-1 構造破壊(8.2 項①) UNQ-HDTV-1 構造破壊(8.2 項①)
		STD-IMAP-GLIMS-2 シール機器の減圧による破壊(8.2 項②) STD-REXJ-3 ベントポートを有する機器の減圧による破壊(8.2 項③)
		●REXJ-002 アームの構造破壊(打上げ時)(8.2 項①)及びアーム破断後の浮遊(8.3 項(2)) ●REXJ-004 打上げ固定機構の故障による機器の衝突(8.3 項(1)) ●REXJ-006 アーム変形による他機器との衝突(8.3 項(2)) ●SIMPLE-UNQ-5 打上げ固定機構の故障による機器の衝突(8.3 項(1))
		●NCR-MCE-01 接触禁止エリアの設定(クルー荷重による構造破壊(IMAP-GLIMS)、レンズ破損(HDTV-EF))(8.3 項(7))
イ 静荷重強度 JEM の構造は、打上げ時及び軌道上において想定され る最大の荷重に対して、十分な強度を有すること。	イ 静荷重強度 JEM の構造は、JEM 飛行運用中の打上げ・着陸荷重、軌道上荷重の中で予想最大荷重である制限荷重に安全率(降伏・終極安全率)を乗じた降伏・終極荷重に対し、温度等を複合した環境条件の下で降伏・破壊を生じないよう設計されている。	イ 静荷重強度 ポート共有実験装置の構造は、打ち上げ、軌道上荷重の中で予想最大荷重である制限荷重に安全率(降伏 1.25 倍・終極安全率 2.0 倍)を乗じた降伏・終極荷重に対し、温度等を複合した環境条件の下で降伏・破壊を生じないよう設計している。 これらは、以下のように検証した。 ポート共有実験装置は、解析を実施し、解析に使用した構造数学モデルは、モーダルサーベイ試験を実施し、ハードウエアとの相関性があることを確認した。 シールを有する機器は、差圧1気圧に対して ISS 共通の安全率を設けて、必要な強度を持たせた設計とし、強度解析により十分安全余裕を有することを確認した。

付表-1 基本指針に対する全体設計・検証結果 (6/12)

JEM 基本指針(平成 8 年)	【参考】国際宇宙ステーションの日本の実験棟(JEM)の安全設計について(報告)	ポート共有実験装置安全検証結果
	(平成 11 年 7 月 7 日)	上記検証でクルー荷重に対しての耐性が確認できなかったカメラのレンズや VLF アンテナについては、接触禁止エリアを設定しクルーによる運用制御により対処されていることを確認した。また、REXJ アームの破断に対しては、アーム内に 2 本のフラットケーブルを組み込み故障許容設計としている。そのフラットケーブルは、軌道上荷重に対して、安全係数:1.5(終極)を適用した強度設計を行っている。 〈関連ハザート・レポート〉 MCE-01 構造破壊(8.2 項①) UNQ-IMAP-GLIMS-1 構造破壊(8.2 項①) REXJ-001 構造破壊(8.2 項①) SIMPLE-UNQ-1 構造破壊(8.2 項①) UNQ-HDTV-1 構造破壊(8.2 項①) STD-IMAP-GLIMS-2 シール機器の減圧による破壊(8.2 項②) STD-REXJ-3 ベントポートを有する機器の減圧による破壊(8.2 項③)
		 ●REXJ-002 アームの構造破壊(打上げ時)(8.2 項①)及びアーム破断後の浮遊(8.3 項(2)) ●REXJ-004 打上げ固定機構の故障による機器の衝突(8.3 項(1)) ●REXJ-006 アーム変形による他機器との衝突(8.3 項(2)) ●SIMPLE-UNQ-5 打上げ固定機構の故障による機器の衝突(8.3 項(1)) ●NCR-MCE-01 接触禁止エリアの設定(クルー荷重による構造破壊(IMAP-GLIMS)、レンズ破損(HDTV-EF))(8.3 項(7))
ウ 疲労強度 JEM の構造は、長期の運用に対して、十分な疲労寿命を 有するか、又は疲労寿命に対する十分な余裕をもって交 換できること。	ウ 疲労強度	
		STD-REXJ-3 ベントポートを有する機器の減圧による破壊(8.2 項③) ●REXJ-002 アームの構造破壊(打上げ時)(8.2 項①)及びアーム破断後の浮遊(8.3 項(2)) ●REXJ-004 打上げ固定機構の故障による機器の衝突(8.3 項(1)) ●REXJ-006 アーム変形による他機器との衝突(8.3 項(2)) ●SIMPLE-UNQ-5 打上げ固定機構の故障による機器の衝突(8.3 項(1))
	①寿命 JEM の計画運用期間は 10 年であるが、運用期間が延長された場合も考慮し、JEM の構造の設計寿命は、15 年と設定されている。 JEM の構造には安全寿命設計が適用され、機械的・熱的負荷サイクルに安全率を乗じた負荷サイクルを受けても構造破壊が生じないよう設計されている。	●NCR-MCE-01 接触禁止エリアの設定(クルー荷重による構造破壊(IMAP-GLIMS)、レンズ破損(HDTV-EF))(8.3 項(7)) ① 寿命 MCE の計画運用期間及び設計寿命は、2年として設計した。また、地上での試験・輸送等の荷重履歴を考慮した寿命を設定している。
	②安全率 ISS 全体に対して寿命安全率 4.0 が共通要求事項であり、JEM にもこの要求事項を適用している。	②安全率 ポート共有実験装置の構造には安全寿命設計が適用され、機械的・熱的負荷サイクルに ISS の規定である安全率4. 0を乗じた 負荷サイクルを受けても構造破壊が生じないよう設計した。
	③疲労寿命の確認 その破損が、スペースシャトル・ISS・JEM・搭乗員に重大な影響を与える JEM の構造要素(フラクチャ・クリティカル・アイテム)は、非破壊検査を実施し、欠陥が許容される範囲内であることを確認することとなっている。	③疲労寿命の確認 設計寿命の検証として、その破損が、HTV・ISS・JEM・搭乗員に重大な影響を与えるポート共有実験装置の構造要素(フラクチャ・クリティカル・アイテム)は、非破壊検査及び亀裂進展解析を実施し、欠陥が許容される範囲内であることを確認した。
(3)構成材料 構成材料については、可燃性、臭気・有害がみ発生、腐食、 応力腐食割れ等の特性を十分考慮して使用すること。	(3)構成材料 〈関連ハザードレポート〉 NASDA-1JA/1J-0001 NASDA-2JA-0001 火災 NASDA-1JA/1J-0003 NASDA-2JA-0003 環境空気汚染 NASDA-1JA/1J-0007 NASDA-2JA-0007 圧力システムの破裂 NASDA-1JA/1J-0010 NASDA-2JA-0010 打上げ/上昇/下降時の荷重による構造破壊 NASDA-1JA/1J-0024 NASDA-2JA-0024 軌道上での荷重による構造破壊 NASDA-ICS-0001 火災 NASDA-ICS-0003 環境空気汚染	(3)構成材料
	NASDA-ICS-0007 圧力システムの破裂 NASDA-ICS-0010 打上げ/上昇/下降時の荷重による構造破壊 NASDA-ICS-0024 軌道上での荷重による構造破壊 ア 可燃性・ガス発生に対する考慮	ア・可燃性・ガス発生に対する考慮
	火災防止、搭乗員の健康障害防止のため、与圧部(船内実験室)内の非金属材料には不燃性・難燃性で、ガスの発生が極めて少ない材料が使用されている。 イ 破壊靱性に対する考慮 デブリの衝突等によって不測の損傷を受けた場合でも致命的破壊に至らないよう、与圧部(船内実験室)外壁等は高い破壊靱性値を持つ構造部材が使用されている。	ポート共有実験装置に対しては、該当機能がないため適用外とする。 イ 破壊靱性に対する考慮 ポート共有実験装置に対しては該当機能がないため適用外とする。

付表-1 基本指針に対する全体設計・検証結果 (7/12)

JEM 基本指針(平成 8 年)	【参考】国際宇宙ステーションの日本の実験棟(JEM)の安全設計について(報告) (平成 11 年 7 月 7 日)	ポート共有実験装置安全検証結果
	ウ その他の材料特性 宇宙環境と有人活動という特殊な条件の中で、材料劣化を防止するため、耐腐食性・耐応力腐食性・耐電食性等を考慮して JEM 構造材料が選定されている。	ウ その他の材料特性 宇宙環境と有人活動という特殊な条件の中で、材料劣化を防止するため、耐腐食性・耐応力腐食性・耐電食性等を考慮して、過去の実績のある材料から選定するか、適切な表面処理をすること等の基準に従って、ポート共有実験装置の構造材料が選定されていることを検査にて確認している。 〈関連ハザートンポート〉 MCE-01 構造破壊(8.2 項①) UNQ-IMAP-GLIMS-1 構造破壊(8.2 項①) REXJ-001 構造破壊(8.2 項①) SIMPLE-UNQ-1 構造破壊(8.2 項①) STD-IMAP-GLIMS-2 シール機器の減圧による破壊(8.2 項②) STD-REXJ-3 ベントポートを有する機器の減圧による破壊(8.2 項③) ● REXJ-002 アームの構造破壊(打上げ時)(8.2 項①)及びアーム破断後の浮遊(8.3 項(2)) ● REXJ-004 打上げ固定機構の故障による機器の衝突(8.3 項(1)) ● REXJ-006 アーム変形による他機器との衝突(8.3 項(2)) ● REXJ-006 アーム変形による他機器との衝突(8.3 項(2)) ● SIMPLE-UNQ-5 打上げ固定機構の故障による機器の衝突(8.3 項(1))
		 ●NCR-MCE-01 接触禁止エリアの設定(クルー荷重による構造破壊(IMAP-GLIMS)、レンズ破損(HDTV-EF))(8.3 項(7))
6.安全・開発保証 搭乗員の安全に影響を及ぼすシステムについては、安全性 並びに安全性を確保するための信頼性、保全性及び品質 保証を十分考慮しなければならない。このため、以下のよ うな対策を講じる必要がある。	4.安全性·信頼性等	4. 安全性·信頼性等
(1)安全性 安全に関わるシステムについては、適切な故障許容(誤操 作を含む。)を確保すること。	(1)安全性 ハサートが、システム・機器の故障・誤動作や搭乗員の誤操作に起因する場合には、原則としてフォールトトレランス(故障許容)設計がとられている。 アハサートの被害の度合いとフォールトトレランス数原則として、各ハサートの被害の度合いに応じて次のフォールトトレランス設計とされている。 (1)カタストロフィックハサート・ 2フォールトトレランス(システム・機器の故障及び搭乗員の誤操作のいかなる2つの組み合わせによっても搭乗員に対する致命傷を引き起こさない設計) (2)カリティカルハサート・ 1フォールトトレランス(単一のシステム・機器の故障又は誤操作により搭乗員への傷害を引き起こさない設計) イ 冗長設計とインとは、少りま計 フォールトトレランス(設計として、次の2つの手法がとられている。・ある機能の喪失が事故に到る場合・・冗長設計・ある機能の意図しない動作が事故に到る場合・・プレとして、外設計	(1) 安全性 ポート共有実験装置は、左記に従い、安全性設計を行った。
(2)信頼性 ア システムの独立性 安全に関わるシステムについては、他のシステムの故障の影響を可能な限り受けないようにすること。また、冗長系は、可能な限り互いに分離して配置すること。	(2)信頼性 アシステムの独立性 電力・通信制御・熱制御・環境制御系統等の安全に関わるシステムは、1 系統が故障した場合でも他方の 1 系統のみで安全な運用を確保できるよう、各系統が冗長設計(並行運転又は待機冗長)され、かつ、冗長系の各要素は物理的に独立している。 また、火災・デブリ衝突等の損傷を想定しても 2 系統が同時に使用不能とならないよう、独立した 2 系統の主要機器は別々のラックに装着され、冗長機器の配置・リソース経路を分離し、故障の伝搬を防止するよう設計されている。 〈関連ハサ・ート・レホ・ート〉全般	(2) 信頼性 ア システムの独立性 電力系については保護回路を設置し、地絡による過電流が生じても伝搬しない設計としている。IMAP-GLIMS 内部には高電圧になる部分(EUVI:最大-5000V, GLIMS:最大 500V)があり、適切な電気設計(ワイヤーサイズ、ボンディング、グランディング)とEVA クルーが触れない部位に設置をする設計としている。 〈関連ハサ・ト・レホ・ト〉 STD-MCE-11 電力系の損傷(地絡による機器損傷)(8.2 項⑥) STD-IMAP-GLIMS-11 電力系の損傷(地絡による機器損傷)(8.2 項⑥) STD-REXJ-11 電力系の損傷(地絡による機器損傷)(8.2 項⑥) STD-SIMLE-11 電力系の損傷(地絡による機器損傷)(8.2 項⑥) STD-HDTV-11 電力系の損傷(地絡による機器損傷)(8.2 項⑥) ■IMAP-GLIMS-3 高電圧部位への接触(8.3 項(6))
イ 故障検知 安全に関わるシステムの故障は、可能な限り自動的に検知され、地上要員に通報されるとともに、緊急を要するもの等必要なものは、搭乗員にも通報されること。	イ 故障検知 搭載する JEMコントロールプロセッサ(JCP)によって、各機器のセンサ等からのデータを周期的に収集 し、JEM 内の故障を検出・同定して、所定の回復手順を自動的に実行することにより、必要最小限の JEMシステム及び搭乗員の安全性を維持する機能(故障検知・分離・回復(FDIR)機能)を有している。 JCP の周期的診断や各個別制御装置の自己診断によって、処置を要する故障が検知された場合、故障機器が遮断され又は警告・警報が発せられ、処置が促される。 なお、JCP は自己診断機能を有しており、JCP 自体に処置を要する故障が検知された場合、 待機冗長の JCP を自動的に立ち上げ、切り換える。 〈関連ハサート・レポート〉 全般	イ 故障検知 ポート共有実験装置の故障検知機能は、各実験装置で実現し、ポート共有装置の安全を維持していることを確認した。例えば、 SIMPLE では異常な温度上昇に対してサーモスタットで検知し、遮断を行う。
ウ 自律性の確保 安全に関わるシステムについては、地上管制が受けられな い場合においても搭乗員の安全を確保すること。	ウ 自律性の確保、自動機能に対するオーバーライド 地上管制との通信が途絶えた状態で、火災・減圧・汚染等の緊急事態が発生した場合には、 軌道上搭乗員が地上に依存することなく、安全確保の処置を行う必要がある。	ウ 自律性の確保、自動機能に対するオーバーライド

付表-1 基本指針に対する全体設計・検証結果 (8/12)

JEM 基本指針(平成 8 年)	【参考】国際宇宙ステーションの日本の実験棟(JEM)の安全設計について(報告)	ポート共有実験装置安全検証結果
	(平成 11 年 7 月 7 日)	
	このため、安全に関わる JEMシステムの自動制御機能は、軌道上の搭乗員、地上要員のいずれからのコマンドによっても安全側への制御を行うこと(オーバーライド)が可能とされている。なお、意図せぬオーバーライド防止のため、オーバーライドコマンドは、搭乗員による独立な 2 つの動作が必要とされている。	ボート共有実験装置に対しては、該当機器がないため適用外とする。
	< 関連ハサ ・ート・レホ・ート> 全般	
ェ 自動機能に対するオーバーライド 安全に関わるシステムの自動機能については、搭乗員及び 地上操作によるオーバーライドができること。	上記に含む	上記に含む
(3)保全性 ア 機能中断の防止 安全上連続的に運用する必要のあるシステムは、重要な機能の中断なく保全できること。	(3)保全性 ISS の保全作業は、船内活動・船外活動・ロボットアーム操作により、基本的に軌道上交換ユニット (ORU)毎に機器・部品の交換が行われる。	(3) 保全性 ポート共有実験装置に対しては該当機能がないため適用外とする。 ア 機能中断の防止
	ア 機能中断の防止 JEM の安全に関わるシステムは、冗長構成となっているため、保全時に 1 系統を停止させた場合でも、他系統で運転を行い、最低限の機能を確保しつつ、保全作業が可能である((2)信頼性参照)。	ポート共有実験装置に対しては該当機能がないため適用外とする。
	〈関連ハザードレポート〉 全般	
イ 危険防止 保全作業については、船外活動の最小化、粉塵等の発 生の最小化、流体の放出の最小化、最適な防護措置等が 行われること。 また、保全に伴う機器の取付け及び取外しは、安全かつ 容易にできること。	イ 危険防止 ①船外活動の最少化 搭乗員の船外活動を極力少なくするため、曝露部(船外実験パレット)上面の機器の保全作業 は、与圧部(船内実験室)内からマニピュレータを使用したロボティクス作業によって行われる。	イ 危険防止 ① • 船外活動の最小化 ポート共有実験装置は、定期的な保全を目的とした船外活動は不要な設計となっている。
	②粉塵等の発生の最少化 軌道上での保全作業では、粉塵等を発生する加工作業は行わない計画である。	② 粉塵等の発生の最少化 ポート共有実験装置は、軌道上での保全作業は計画されていないため、適用外とする。
	③流体放出の防止 保全時の流体の放出防止のため、熱制御系の水ループ機器等のインタフェースには、クイックディスコネ クタ(QD)を使用している。	③ 流体放出の防止 ポート共有実験装置に対しては、該当機能がないため、適用外とする。
	④防護措置 保全作業時の安全を確保するため、露出表面温度が許容温度を超える箇所にはカバー、電気コネクタへの保護キャップ、鋭利端部への保護カバー等が設けられている。	④ 防護措置 ポート共有実験装置は、軌道上での保全作業は計画されていないため、適用外とする。
	⑤機器取付け及び取外しでの安全	⑤ 機器取付け及び取外しでの安全
	コネクタは、識別、結合・分離操作が容易にでき、誤った挿入・脱着ができない構造となっており、 確実なロック機能を有している。 ORU 間の連結配管・ワイヤー・ケーブルは、取外し等のために長さに余裕を持たせている。	ポート共有実験装置に対しては、該当機能がないため、適用外とする。
	<関連ハザードレポート> NASDA-1JA/1J-0002 水の漏洩 NASDA-1JA/1J-0003 NASDA-2JA-0003 環境空気汚染 NASDA-1JA/1J-0011 NASDA-2JA-0011 固定されていない機器との衝突(軌道上) NASDA-1JA/1J-0016 NASDA-2JA-0016 感電 NASDA-1JA/1J-0017 NASDA-2JA-0017 接触面温度異常	
	NASDA-ICS-0002 水の漏洩 NASDA-ICS-0003 環境空気汚染 NASDA-ICS-0011 固定されていない機器との衝突(軌道上) NASDA-ICS-0016 感電 NASDA-ICS-0017 接触面温度異常	
(4)品質保証 安全に関わるシステムの機能、性能等を確認するため、製造管理及び十分な検証を行うとともに、その記録を保存すること。 また、JEM の安全確保に必要なデータは、その効率的蓄積・利用に資するために、問題報告・是正処置、部品情報、材料・工程情報等についてデータベース化を図ること。	(4)品質保証 安全の要求を含む、機能・性能等を満足していることを確認するため、部品・材料レヘ・ル、コンホーネントレヘ・ル、サフ・システムレヘ・ル、システムレヘ・ルの各段階において、試験・解析・検査・デ・モンストレーションにより十分な検証が実施されることとなっている。 また、JEMシステムの構成品が仕様書の要求に合致していることを確認するため、製造工程が管理され、製造時に得られたデータを含む製造作業の記録が保存される。	(4) 品質保証 安全の要求を含む、機能・性能等を満足していることを確認するため、部品・材料レベル、コンポーネントレベル、サブシステムレベル、システムレベルの各段階において、試験・解析・検査・デモンストレーションによる検証を実施し、各設計段階において、審査会等を開催し、各種記録類、解析書、試験データ、評価結果等のエビデンスの確認を通して、検証の妥当性を確認した。 また、ボート共有実験装置システムの構成品が仕様書の要求に合致していることを確認するため、製造会社において製造工程が管理され、製造時に得られたデータを含む製造作業の記録が、ポート共有実験装置の運用期間中保存されている。さらに宇宙航空研究開発機構では、審査、監査等を行い、製造会社におけるデータ管理等の確認を実施してきた。
		なお、これらのデータのうち、次の安全確保に必要なデータの効率的な蓄積・利用を図るため、データベース化を目的として JEM S&PA データ交換システム (SPADE システム)を構築し、データの入力を行っている。現在、ペイロード関連として約 1000 件程度のデータがまとめられており、関係者によるデータ検索、閲覧が可能である。 ・デビエーション・ウェイバーリスト

付表-1 基本指針に対する全体設計・検証結果 (9/12)

JEM 基本指針(平成 8 年)	【参考】国際宇宙ステーションの日本の実験棟(JEM)の安全設計について(報告) (平成 11 年 7 月 7 日)	ポート共有実験装置安全検証結果
	なお、これらのデータのうち、次の安全確保に必要なデータの効率的な蓄積・利用を図るため、データへ、一ス化を目的として JEM S&PAデータ交換システム(SPADEシステム)が構築されている。 ・JEM 問題報告及び是正処置データ ・JEM 材料及び工程技術データ ・JEM 電気、電子、電気機械(EEE)部品データ ・JEM FMEA/カリティカルアイテムリスト(CIL)データ ・JEM ORUデータ ・JEM ハサート、関連データ(ハサ・ート・レホート)	・材料及び工程技術データ ・電気、電子、電気機械(EEE)部品データ ・MIUL,MUA データ ・安全審査議事録、アクションアイテム ・ ペイロード SAR (ハザードレポート)
7.人間・機械系設計 JEM は、我が国初めての本格的な有人宇宙活動を提供する場であり、安全確保を図る上で人的要因を十分考慮しなければならない。このため、以下のような対策を講じる必要がある。	5.人間・機械インタフェース設計	5. 人間・機械インタフェース設計
(1)搭乗員の保護 搭乗員が触れる可能性のある部分は、適切な丸みを持たせるとともに、破損しても破片が飛散しないようにするなど、外傷、火傷、感電等が生じないようにすること。また、足部固定具、取っ手等は、荷重に十分耐えられること。	(1) 搭乗員の保護 構体・機器による外傷・火傷・感電等の傷害から JEM 内の搭乗員を保護するため、以下の対 策が講じられている。 〈関連ハサート・レポート〉 NASDA-1JA/1J-0013 NASDA-2JA-0013 回転機器への接触又は回転機器破損による破片 の衝突 NASDA-1JA/1J-0016 NASDA-2JA-0016 感電 NASDA-1JA/1J-0017 NASDA-2JA-0017 接触面温度異常 NASDA-1JA/1J-0018 NASDA-2JA-0018 鋭利端部及び突起物 NASDA-1JA/1J-0019 NASDA-2JA-0019 切断/挟み込み NASDA-1JA/1J-0026 NASDA-2JA-0029 不適切な船外活動(EVA)移動支援具 NASDA-ICS-0016 感電 NASDA-ICS-0017 接触面温度異常 NASDA-ICS-0018 鋭利端部及び突起物 NASDA-ICS-0018 鋭利端部及び突起物 NASDA-ICS-0019 切断/挟み込み	(1) 搭乗員の保護 構体・機器による外傷・火傷・感電等の傷害から搭乗員を保護するため、以下の対策を講じた。
	ア 外傷の防止 ①回転機器に対する防護 ファン、ポンプ等の回転機器は、ハウジング等により覆い、不意の接触による外傷の防止が図られている。 また、回転機器自体は、破壊した場合、破片が飛び散らないよう、安全化設計が行われている。	ア 外傷の防止 ① 回転機器に対する防護 ポート共有実験装置に使用されているモータ等の回転機器は、搭乗員が不意に接触しないように、金属により覆われていることを、設計図面、製造図面、フライトハードウェアの検査で確認した。また、ファン等の回転部位については、破壊し飛び散ることが無しように、使用材料の選定、機能試験により確認した。 〈関連ハサートレホート〉 STD-IMAP-GLIMS-13 回転機器の飛散(8.2 項⑦) STD-REXJ-13 回転機器の飛散(8.2 項⑦) STD-HDTV-13 回転機器の飛散(8.2 項⑦)
	②鋭利端部・突起物に対する防護 ISSの要求値に従って、構造・装置の角・鋭利端部に丸みを持たせる等の処置が行われ、性能の維持等のため取り除けない鋭利端部・突起物にはカバー等適切な保護が施されている。	② 鋭利端部・突起物に対する防護 搭乗員が接触する可能性のあるポート共有実験装置の構造・装置については、ISS 共通の安全要求に従って、角・鋭利端部に丸みを持たせる設計が行われており、設計図面、製造図面に反映され、製造中に発生する可能性のあるバリ等の有無も含めて最終的にフライトハードウェアに対し、目視、触診、R ゲージ等による検査を行い搭乗員に対する保護を確認した。また保護カバーが設置されていることを図面、実機検査により確認した。上記によることができない部位(VISI, EUVI, VLF アンテナ, GLIMS レンズ, IEM-HU, HDTV レンズ)についてはクルーがアクセスしなしように、クルーによるアクセスの方法について、搭乗員の手順書へ反映されることを確認した。 〈関連ハザート・レポート〉 STD-MCE-4 鋭利な端部、突起物への接触(8.2 項⑧) STD-IMAP-GLIMS-4 鋭利な端部、突起物への接触(8.2 項⑧) STD-REXJ-4 鋭利な端部、突起物への接触(8.2 項⑧) STD-SIMPLE-4 鋭利な端部、突起物への接触(8.2 項⑧) ●SIMPLE-UNQ-6 鋭利な端部、突起物への接触(8.2 項⑧) ●SIMPLE-UNQ-6 鋭利な端部、突起物への接触(8.3 項(7)) STD-HDTV-4 鋭利な端部、突起物への接触(8.3 項(7))
	③巻き込み・挟み込みに対する防護 機器は搭乗員が引っかかることのないような配置・大きさ・形状を考慮した設計とされ、ハッチ等 搭乗員が挟まれる可能性のある機構は、警告表示により注意喚起されている。 さらに、可動部を持つ機器は、不意に稼働しないようにインヒビットが設けられているとともに、緊 急停止が可能な設計となっている。	●UNQ-IMAP-GLIMS-1 ガラス破損(8.3 項(7)) SIMPLE-UNQ-3 ガラス破損(8.2 項⑨) ●UNQ-HDTV-1 ガラス破損(8.3 項(7)) ●NCR-MCE-01 MCE 接触禁止エリアの設定(鋭利な端部(SIMPLE))(8.3 項(7)) ③ 巻き込み・挟み込みに対する防護 搭乗員が触れる可能性のある機器については、引っかかることのないように、ISS 共通の安全要求に従って、穴、すきまに対する設計が行われており、設計図面、製造図面に反映され、最終的にフライトハードウェアに対する検査を行い搭乗員に対する保護を確認した。 上記によることができない部位についてはクルーがアクセスしないように、クルーによるアクセスの方法について、搭乗員の手順書へ反映されることを確認した。 また、可動部については、不意に稼働しないようインヒビットが設けられていることを確認した。 〈関連ハザート・レポート〉 ●UNQ-IMAP-GLIMS-2 挟み込み(8.3 項(7)) ●REXJ-005 挟み込み(8.3 項(3)) ●NCR-MCE-01 接触禁止エリアの設定(挟み込み(REXJ, IMAP))(8.3 項(7)) イ 火傷の防止

付表-1 基本指針に対する全体設計・検証結果 (10/12)

JEM 基本指針(平成 8 年)	【参考】国際宇宙ステーションの日本の実験棟(JEM)の安全設計について(報告) (平成 11 年 7 月 7 日)	ポート共有実験装置安全検証結果
	露出部の表面は、火傷や凍傷を生じない温度範囲(与圧区域内にあり連続的な接触のある 箇所の温度は 4℃ 45℃)となるように設計され、この温度範囲を超える機器は、ラックパネル、クロース・アウトパネル等により直接の接触を防止し、又は警告ラベルにより搭乗員の注意を喚起する。	露出部の表面は、火傷や凍傷を生じない温度範囲(-118~113°C)であることを解析により確認した。ただし、これらを逸脱する SIMPLE の IMP 試料部部及び REXJ Hand については Heat rate 要求を満足すること、MCE の Abutment Plate 部については船外外活動(EVA)グローブの短時間作業における許容温度以内となることを確認した。
		〈関連ハザート・レホート〉 ●MCE-02 高温/低温部への接触(8.3 項(5)) STD-IMAP-GLIMS-10 高温/低温部への接触(8.2 項⑩) STD-REXJ-10 高温/低温部への接触(8.2 項⑪) ●UNQ-SIMPLE-4 高温/低温部への接触(8.3 項(5)) STD-HDTV-10 高温/低温部への接触(8.2 項⑩)
	り 感電の防止 電気設備は、短絡・接続不良等による漏電を防止するため、電カリート、線・接点・端子・コンデンサ 等の露出を避け、また、電気機器は、感電を防止するための適切なポンディング・接地・絶縁が行 われている。 電カラインのコネクタは、搭乗員による装脱着時の感電等の防止のため、コネクタ上流に電流遮断 機能をもたせるとともに、ピンが露出しないタイプのコネクタの採用、コネクタの接地の確保が行われて	ウ 感電の防止 電カラインについては、短絡・接続不良等による漏電を防止するため、電カリード線・接点・端子・コンデンサ等が露出していないことを実機検査にて確認した。電線・ケーブルについては、ISSの要求に従った被覆のされている部品を選定していることを部品リスト、実機検査により確認したまた、電気機器の接地が行われていることを確認するために、ハードウェアに対して絶縁抵抗試験、ボンディング・グランディング抵抗測定を実施した。 ポート共有実験装置の高電圧部については、クルーが触れない設計であること、ボンディング・接地が行われている事を確認した。
	いる。 船外活動による電力ラインのコネクタは、溶融金属(Molten Metal)の飛散による宇宙服への損傷を防止する観点から、コネクタ上流に電流遮断機能をもたせており、軌道上での手順書への遮断手順の反映を図面、解析、機能試験により確認した。コネクタは、上流側にはソケットタイプの使用、スクーププルーフタイプの使用、着脱時にピンが露出しないようにハウジングをもったタイプのコネクタの使用、コネクタの適切な接地を部品リスト、図面、実機確認により確認した。	〈関連ハザート・レホート〉 STD-MCE-11 電力系の損傷(地絡による機器損傷)(8.2 項⑥) STD-IMAP-GLIMS-11 電力系の損傷 (地絡による機器損傷)(8.2 項⑥) STD-REXJ-11 電力系の損傷 (地絡による機器損傷)(8.2 項⑥) SIMLE-STD-11 電力系の損傷 (地絡による機器損傷)(8.2 項⑥) STD-HDTV-11 電力系の損傷 (地絡による機器損傷)(8.2 項⑥) STD-HDTV-EF-9 電池の破裂/電解液の漏洩(8.2 項④)
		●UNQ-IMAP-GLIMS-3 高電圧部への接触(8.3 項(6))
	」 作業等の安全	エ 作業等の安全
	足部固定具(フットレストレイント)、取っ手(nンドレール)等の移動支援具は、荷重に十分耐えられるように適切な安全率(1.5)を持った構造設計が行われ、搭乗員の移動・作業場所を考慮した適切な位置に配置されている。	ポート共有実験装置に対しては、該当機能がないため適用外とする。
(2)誤操作等の防止 安全に関わるシステムについては、搭乗員の負担を軽減するとともに、誤操作及び操作忘れの発生を防止するため、 可能な限り自動化すること。 また、JEM の内部装飾、機器の操作手順、視野等につい ては、誤操作等の生じにくいよう十分配慮すること。	(2)誤操作の防止 〈関連ハザードレポート〉 全般	(2) 誤操作の防止 ポート共有実験装置に対しては、該当機能がないため適用外とする。
	ア 自動化 搭乗員の誤操作・操作忘れの防止などのため、JEMRMS(ロボットアーム)コンソール電源投入時のア ビオニクスファン・煙検知器の自動的始動等、可能な限りの自動化が図られている。	ア 自動化 ポート共有実験装置に対しては、該当機能がないため適用外とする。
	イ 内部装飾 搭乗員の誤認を避けるため、室内の装飾、銘板、ラヘル、マーキングに対し、次のような配慮がなされている。 ①JEM の内部装飾全体は、搭乗員に上下左右の方向感覚を持たせるような設計とされている。 ②配線束・流体配管は、両端及び 1m(非与圧領域は 5m)間隔でその機能が識別でき、また、バルプの開閉状態が容易に確認できるようにされている。 ③データ表示・操作手順表示・マーキングは、英語又は国際標準シンボルを使用し、日本語等他の言	イ 内部装飾 ポート共有実験装置に対しては該当機能がないため適用外とする。
	語を使用する場合には、並記することとされている。 ウ 機器の操作手順 ①ハサートを発現させる可能性のあるコマント・(ハサータ・ス・コマント・)は、搭乗員又は地上要員が安全のための必要条件を満足していることを確認した後、発信されることとなっている。	ウ 機器の操作手順 ポート共有実験装置に対しては該当機能がないため適用外とする。
	②安全上重要なシステム・装置は、独立したインヒビットにより保護されている。 I 視野等 ①JEMRMS(ロボットアーム)によるペイロード等の受け渡しは、搭乗員が JEM 与圧部(船内実験室)内の JEMRMS(ロボットアーム)コンソールの TVカメラ、モニタを通して確認しながら遠隔操作で行われる。 ②搭乗員の作業面では、作業・操作・表示機器確認に支障がないように十分な照明(特に規定がない限り、白色光で 108Lux 以上)が確保されている。	エ 視野等 ポート共有実験装置に対しては該当機能がないため適用外とする。
(3)共通化 安全に関わるシステムについては、可能な限り国際的に共 通化を図ること。	(3)共通化 ISS 全体の安全に関わる JEM の構成要素(ハードウェア・ソフトウェア・インタフェース)は、ISS 構成要素との間で共通化(全く同一であること)、標準化(設計標準、設計基準等を適用すること)が図られている。	(3) 共通化 ISS 全体の安全に関わる ポート共有実験装置の構成要素(ハードウェア・ソフトウェア・インタフェース)は、原則として ISS 構成要素との間で共通化(全く同一であること)、標準化(設計標準、設計基準等を適用すること)されていることを確認した。
	この共通化・標準化には、次のとおり、特に直接搭乗員の安全に関わる表示・警告・警報の統一、避難・非常操作・緊急処置等に関わる手順・対応の統一、安全確保の面から重要な保全方法の統一が重点的に含まれている。 ①警告・警報等	

付表-1 基本指針に対する全体設計・検証結果 (11/12)

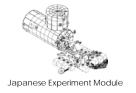
JEM 基本指針(平成 8 年)	【参考】国際宇宙ステーションの日本の実験棟(JEM)の安全設計について(報告)	ポート共有実験装置安全検証結果
	(平成 11 年 7 月 7 日) 共通化:音声端末、警告・警報バネル、ラベル、マーキング 標準化:警報のクラス分け ②火災検知/消火システム 共通化:煙センサ、可搬式消火器 ③マニピュレータ(ロボティクス) 共通化:親アームの被把持部、把持機構、ハンドコントローラ、 ラップトップ・コンピュータ(ハート・ウェアのみ) 標準化:ラップトップ・コンピュータの表示 ④その他 共通化:ハッチ、ハント・レール、足部固定具、窓組立 等 標準化:配管・配線等識別用シール、銘板 〈関連ハサ・ート・レホ・ート〉 全般	
8.緊急対策 火災、減圧、汚染等の異常が発生し、緊急を要するときにおいても、搭乗員の安全に重大な影響が及ばないようにしなければならない。このため、以下のような対策を講じる必要がある。	6.緊急対策 火災・減圧・汚染の発生等の緊急時においても、搭乗員の安全に重大な影響が及ばないよう にするため、 以下の対策が講じられている。	6. 緊急対策
(1)緊急警報 緊急警報は、人命に脅威となるような異常を識別でき、安全に退避できるよう十分早く発信できること。 また、人命への脅威に関する緊急警報は、異常を発見した搭乗員が警報ポタン等により手動で警報を発出できること。	(1)緊急警報 JEM ではワークステーションラック及び RMSラックの 2 箇所に設置されている ISS 共通の警告・警報 パネルによって、3 段階の緊急度に応じ、Emergency(Class1)、Warning(Class2)又は Caution(Class3)が発せられる。 Class 1 である火災・減圧・汚染に対しては、センサ検知による自動起動又は搭乗員若しくは 地上要員による起動が可能であり、各ハサートに固有の警報音と点滅ライトで、警告・警報を発するシステムとなっている。 〈関連ハサート・レポート〉 NASDA-1JA/1J-0001 NASDA-2JA-0001 火災 NASDA-1JA/1J-00023 隔離/退避不能	(1)緊急警報 以下参照
	ア 火災 火災検知区域(RMSラック、実験ラック、空調装置入り口、補給部与圧区(船内保管室)(船内保管室)循環ファン出口等)毎に煙センサが配置され、火災発生が検知されると ISS の警告・警報システム に通知され、ISS 全体に警告・警報が発出される。 また、消火区画は、区域毎に可搬式消火器による二酸化炭素放出のためのポートが設けられ、区画に対応した電源遮断及び循環空気停止を可能としている(注)。 (注)JEM は、不燃性・難燃性材料の使用による燃焼抑止、適切な太さの電線の選定による過熱防止、ハーメチックシールタイプによる電気的発火防止設計、適切な熱設計・故障検知分離システムの適用による過熱防止設計等により、火災発生のリスクを最小化した設計となっている。	ア 火災 ポート共有実験装置に対しては該当機能がないため適用外とする。J
	イ 減圧 キャビン内の減圧は、ISS 本体により常時監視され、設定圧以下・設定減圧速度以上となると、ISS 内に警告・警報が発せられ、急速な減圧時には自動的に真空排気系の遮断弁が遮断される。	イ 減圧 ポート共有実験装置に対しては該当機能がないため適用外とする。
	ウ 汚染 JEMのキャビン内の空気は、ガスサンプリングラインによりISS本体の環境監視装置に定期的に送られて分析・監視され、汚染物質、二酸化炭素・酸素分圧の異常等が検知された場合には、ISS内に警告・警報が発せられる。	ウ 汚染 ポート共有実験装置に対しては該当機能がないため適用外とする。
(2)アケセス 非常設備、防護具、安全上重要な手順書等は、緊急時に おいても、搭乗員が容易に取り出して使用できるように保 管すること。 また、通路は、搭乗員が安全かつ速やかに脱出・避難で きること。	(2)アクセス 〈関連ハサ゛ート゛レホ゜ート〉 全般	(2)アクセス
	ア 非常設備、防護具 非常設備として、可搬式消火器が与圧部(船内実験室)2 箇所及び補給部与圧区(船内保管室)船内保管室)1 箇所に備えられ、また、防護具として可搬式呼吸器が可搬式消火器使用前に装着できるように消火器から 91cm 以内に設置され、これらの保管場所は容易に識別できるよう表示される。	ア 非常設備、防護具 ポート共有実験装置に対しては該当機能がないため適用外とする。
	イ 安全上重要な手順書 軌道上で必要となる安全上重要な手順書は、軌道上で搭乗員がアクセスできる電子ファイル 媒体、文書として保管・掲示される。	イ 安全上重要な手順書 軌道上で必要となる安全上重要な手順書は、軌道上で搭乗員がアクセスできるよう電子ファイル媒体、文書として保管・掲示され ることになっており、特にタイムクリティカルな手順書については、決められた場所に置くことになっていることを確認した。
	ウ 通路 搭乗員の移動・作業を容易にするため、通路にハンドレール、フットレストレイン・等が設置される。 また、電源喪失時に備えて、非常用電源による非常灯が設置されるほか、ラックの転倒・移動 時でも直径 81cm 以上の通路が確保される構成となっている。	ウ. 通路 ポート共有実験装置に対しては該当機能がないため適用外とする。

付表-1 基本指針に対する全体設計・検証結果 (12/12)

JEM 基本指針(平成 8 年)	【参考】国際宇宙ステーションの日本の実験棟(JEM)の安全設計について(報告)	ポート共有実験装置安全検証結果
(3)減圧及び再加圧 火災、汚染等の異常が発生した場合には、与圧部(船内 実験室)及び補給部与圧区(船内保管室)(船内保管室)内 の空気を排出するため、減圧及び再加圧ができること。 また、JEMの起動に際し、搭乗員の JEM への移乗前に安 全の確認ができること。	(平成 11 年 7 月 7 日) (3)減圧・再加圧 JEM に火災・汚染等の異常が発生した場合には、ハッチ等を閉鎖して、ISS 本体から隔離した後、キャビン空気を排気弁により宇宙空間に排出して減圧し、続いて、均圧弁を開くことにより、ISS 本体のキャビン空気を取り込んで、再加圧できるよう設計されている。また、JEM の起動・再起動に際しては、搭乗員が JEM 内に移乗する前に、ISS 本体側から電力供給系・水ループ・JCP・システムネットワーク・空気調和装置・モジュール間通風換気(IMV)・火災検知系・カ・スサンプ・リンク・ライン・警告・警報ハ・ネル等与圧環境の安全の確保に必要な最小限の機能を立ち上げることのできるシステム構成となっている。 〈関連ハサ・ト・レホ・ト〉 NASDA-1JA/1J-0005 減圧	(3)減圧・再加圧ポート共有実験装置に対しては該当機能がないため適用外とする。
9.安全確保体制 JEM の安全確保に関わる活動については、開発及び運用の担当部門から独立した部門においても行うこと。また、安全上のあらゆる問題点について、開発及び運用の責任者まで報告される体制を確立すること。さらに、JEM の開発及び運用に携わる者への安全教育・訓練を実施するとともに、安全確保に係る事項の周知徹底を図ること。	7.安全確保体制 安全・開発保証活動のための体制については、JEMの開発・利用・運用の担当である JEMプロジェルチーム等から独立した安全・開発保証部門である「宇宙ステーション安全・信頼性管理室」において、方針・要求事項の設定、その履行状況の評価、必要な勧告が行われている。また、安全上の問題については、開発・運用の責任者まで報告・検討される体制が確立されている。 さらに、JAXA において、JEM の開発・運用に携わる者への安全教育・訓練が実施されるとともに、安全確保に係る事項の周知徹底が図られている。	7. 安全確保体制 安全・開発保証活動のための体制については、実験装置開発である宇宙環境利用センターから独立した安全・開発保証部門である 「有人システム安全ミッション保証室」において、方針・要求事項の設定、その履行状況の評価、必要な勧告が行われている。 また、安全上の問題については、開発・運用の責任者まで報告・検討される体制が確立されている。 さらに、JAXA において、装置の開発・運用に携わる者への安全教育・訓練が実施されるとともに、安全確保に係る事項の周知徹底が図られている。

付表-2

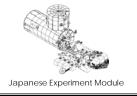
JAXA有人安全審査会で審査したMCEハザードレポート



付表-2 JAXA有人安全審査会で審査したMCEハザードレポート(1/2)

【標準ハザードレポート】(ISS標準ハザードレポート様式で規定される項目)

	ハザード内容	REXJ	SIMPLE	IMAP-GLIMS	HDTV-EF	MCE
1	打上げ荷重による構造破壊(輸送用バッグに 梱包して打ち上げられるものが対象)	該当なし	該当なし	該当なし	該当なし	該当なし
2	シールを有する機器の差圧による破損	該当なし	(SIMPLE-UNQ- 2内で評価)	該当	該当なし	該当なし
3	ベントポートを有する機器の差圧による破損	該当	該当なし	該当なし	(UNQ-HDTV-1 で評価)	(MCE-01で評価)
4	シャープエッジ	該当	(SIMPLE-UNQ- 6内で評価)	該当	該当	該当
5	ガラス破損	該当	(SIMPLE-UNQ- 3内で評価)	(UNQ-IMAP- GLIMS-1で評 価)	(UNQ-HDTV-1 で評価)	該当なし
6	火災(可燃性物質の使用)	該当なし	該当なし	該当なし	該当なし	該当なし
7	船内空気の汚染(使用材料からのオフガス)	該当なし	該当なし	該当なし	該当なし	該当なし
8	電磁干渉	該当	該当	該当	該当	該当
9	電池の破裂/漏えい	該当なし	該当なし	該当なし	該当	該当なし
10	高/低温部への接触	該当	(SIMPLE-UNQ- 4で評価)	該当	該当	(MCE-02で評価)
11	電力系の損傷	該当	該当	該当	該当	該当
12	発火源の有無	該当なし	該当なし	該当なし	該当なし	該当なし
13	回転機器の破損	該当	該当なし	該当	該当	該当なし
14	電力コネクタ着脱時の感電	該当なし	該当なし	該当なし	該当なし	該当なし
15	クルー退避時の障害	該当なし	該当なし	該当なし	該当なし	該当なし
16	水銀による船内空気の汚染	該当なし	該当なし	該当なし	該当なし	該当なし

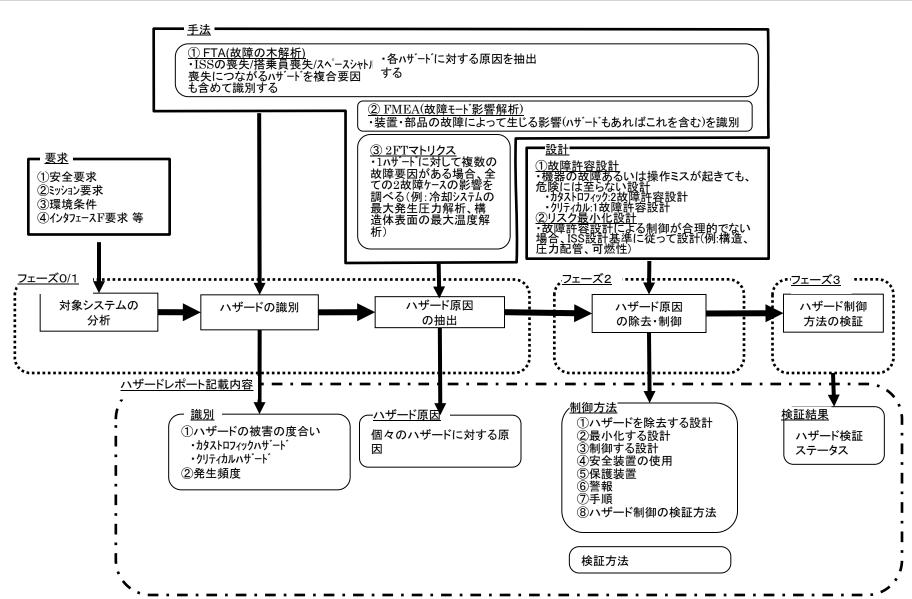


付表-2 JAXA有人安全審査会で審査したMCEハザードレポート(2/2)

【ユニークハザードレポート】(ISS標準ハザードレポート様式で規定される項目以外のもの)

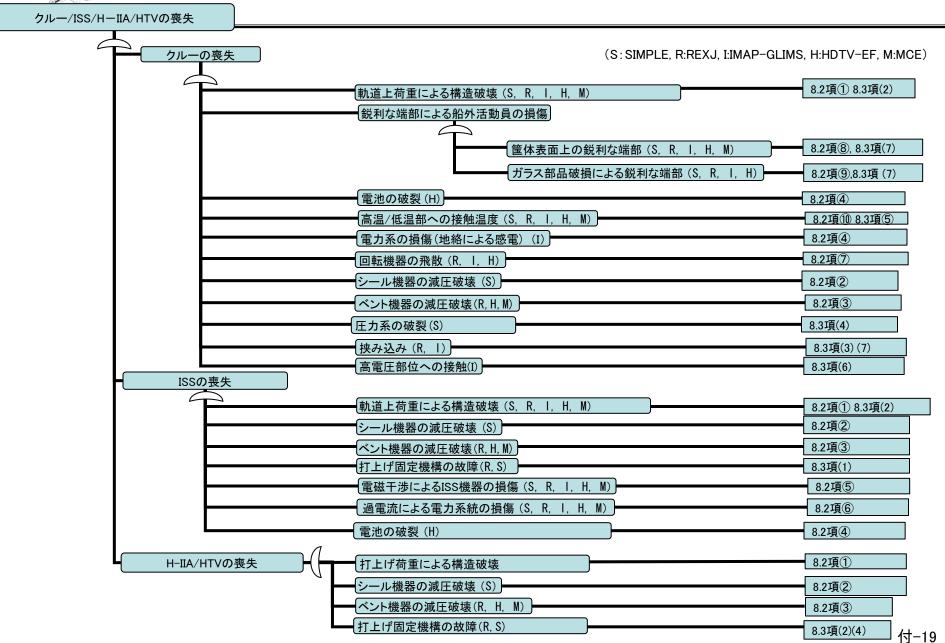
	HR番号	REXJ		
1	REXJ-001	打上げ荷重及び軌道上荷重による構造破壊(REXJ本体)		
2	REXJ-002	打上げ荷重及び軌道上荷重による構造破壊(Hand機構及びアーム)		
3	REXJ-003	欠番		
4	REXJ-004	打上げ固定機構(ロンチロック)の故障による機器の衝突		
5	REXJ-005	Handの誤動作によるEVAクルーの挟み込み		
6	REXJ-006	軌道上荷重によるアーム展開時の他機器への衝突		
		SIMPLE		
1	SIMPLE-UNQ-1	打上げ荷重及び軌道上荷重による構造破壊		
2	SIMPLE-UNQ-2	圧力容器(ガスボトル)の破裂		
3	SIMPLE-UNQ-3	カメラレンズの破損		
4	SIMPLE-UNQ-4	高/低温部への接触		
5	SIMPLE-UNQ-5	打上げ固定機構(ロンチロック)の故障による機器の衝突		
6	SIMPLE-UNQ-6	シャープエッジによるEVAクルーの船外服の破損		
		IMAP-GLIMS		
1	UNQ-IMAP-GLIMS-1	打上げ荷重及び軌道上荷重による構造破壊(ガラスの破損を含む)		
2	UNQ-IMAP-GLIMS-2	EVAクルーのグローブの挟み込み		
3	UNQ-IMAP-GLIMS-3	EVAクルーの高電圧部への接触による感電		
		HDTV-EF		
1	UNQ-HDTV-1	打上げ荷重及び軌道上荷重による構造破壊(ガラスの破損、差圧による機器破壊を含む)		
		MCE		
1	MCE-01	打上げ荷重及び軌道上荷重による構造破壊		
2	MCE-02	高/低温部への接触		

付図-1


安全設計の流れ

付図-1 安全設計の流れ*

*平成20年9月16日第2回安全部会にて報告。


付図-2

ポート共有実験装置 ハザードFTA

付図-2 ポート共有実験装置ハザード FTA

