資料 1 一 2 一 3 別添 科学技術・学術審議会 研究計画・評価分科会 宇宙開発利用部会 調査・安全小委員会 (第1回) H24.10.26

		(第1回)H24.10.26
宇宙ステーション取付型実験モジュール(JEM)に係る安全評価のための基本指針 (平成8年4月24日宇宙開発委員会安全評価部会)	国際宇宙ステーションの日本実験棟「きぼう」(JEM)に係る安全対策の評価のための基本指針 (平成24年9月6日 宇宙開発利用部会)	備考
1. 目的及び位置付け 本指針は、宇宙開発委員会として、宇宙ステーションの全体計画との整合性をとりつつ JEMの開発及び運用に係る安全確保を図ることを目的とする。 また、本指針は、安全評価部会においてJEMの安全対策について総合的かつ系統的 に調査審議する際の指針と位置付ける。	1. 目的及び位置付け 本指針は、宇宙開発利用部会として、宇宙ステーションの全体計画との整合性をとりつつJEM の開発及び運用に係る安全確保を図ることを目的とする。 また、本指針は、宇宙開発利用部会において、JEMの安全対策について総合的かつ系統的 に調査審議する際の指針と位置付ける。	
2. 適用範囲本指針は、JEMの開発及び運用の各段階において行う安全評価に適用することとし、各段階において新たに必要となる事項等については、適宜追加、改訂を行うこととする。なお、JEMを利用して実施される実験の装置、試料、方法等の安全性については、実験テーマ選定にあわせて別途調査審議を行うこととする。	2. 適用範囲 本指針は、JEMの開発及び運用の各段階において行う安全評価に適用することとし、各段階 において新たに必要となる事項等については、適宜追加、改訂を行うこととする。 なお、JEMを利用して実施される実験の装置、試料、方法等の安全性については、本指針を準 用して評価を行う。	試料、方法等についても、本指針を準用し
3. 基本的な考え方 JEMの安全確保のため、以下の基本的な考え方に従って十分な安全対策を講じ、リスクを可能な限り小さくすることとする。	3. 基本的な考え方 (変更なし)	
(1)安全確保の対象 宇宙ステーションは、人間をその構成要素として含むシステムであり、搭乗員の死傷を 未然に防止するため、安全確保を図ることとする。	(1)安全確保の対象 (変更なし)	
(2)安全確保の方法 JEMの開発及び運用においては、すべてのハザードを識別し、以下の優先順位に従っ てハザードを制御し、残存ハザードのリスクを評価することとする。	(2)安全確保の方法 (変更なし)	
アハザードの除去 ハザードについては、可能な限り除去する。 イリスクの最小化設計 故障許容設計、適切な部品・材料の選定等により、リスクが最小となるようにする。 ウ安全装置 異常が発生したとしても被害を最小限にするように、安全装置を付加する。 工警報・非常設備等 異常が発生した場合には、警報が作動し、また、万一緊急の措置を要する事態に 至った場合には、緊急警報が作動して、搭乗員に異常を知らせる。 さらに、異常の発生に備えて、非常設備及び防護具を備える。 オ運用手順 リスクが最小となるような運用手順を整備する。 カ保全 適切な予防保全により、異常の発生頻度を小さくする。		
(3)有人活動の特殊性への配慮 JEMは、自然環境及び誘導環境から搭乗員及び安全に関わる機器を保護するため に、十分な構造上の強度、寿命等を有するとともに、安全に関わるシステムの故障(誤操作を含む。)に対する適切な許容度の確保、容易な保全等ができるようにする。 また、火災、爆発、危険物等による異常の発生の防止並びに外傷、火傷、感電等の傷害及び疾病の発生の防止を図るとともに、緊急対策に十分配慮する。	(3)有人活動の特殊性への配慮 (変更なし)	

「国際宇宙ステーションの日本実験棟「きはつ」(JEM)に係る安全対策の評価のための基本指針(宇宙開発利用部会)」の対照		
宇宙ステーション取付型実験モジュール(JEM)に係る安全評価のための基本指針 (平成8年4月24日宇宙開発委員会安全評価部会)	国際宇宙ステーションの日本実験棟「きぼう」(JEM)に係る安全対策の評価のための基本指針 (平成24年9月6日 宇宙開発利用部会)	備考
4. 宇宙環境対策 JEMは、宇宙における自然環境並びに打上げ時及び軌道上における誘導環境から搭乗員及び安全に関わるシステムが保護されるようにしなければならない。このため、以下のような対策を講じる必要がある。	4. 宇宙環境対策 (変更なし)	
(1) 自然環境からの保護 ア 隕石・スペースデブリ 隕石・スペースデブリの衝突により、JEMの安全に関わるシステムが損傷し、搭乗員 が危険な状態とならないよう、可能な限り防御すること。 なお、万一隕石・スペースデブリがJEMに衝突した場合には、JEMから宇宙ステー ション本体への退避により、搭乗員の安全確保を図ること。	(1) 自然環境からの保護 ア 隕石・スペースデブリ 隕石・スペースデブリの衝突により、JEMの安全に関わるシステムが損傷し、搭乗員が危険な 状態とならないよう、可能な限り防御すること。 なお、万一隕石・スペースデブリがJEMに衝突した場合には、JEMから宇宙ステーション本体 等への退避により、搭乗員の安全確保を図ること。	脱出・避難手段が多様化しているため、 「等」を追加。
イ宇宙放射線 JEMの安全に関わる機器は、放射線による誤動作、故障及び性能劣化を可能な限り 生じないこと。 また、搭乗員が搭乗期間中に受ける放射線の被曝量をモニターすること。	イ 宇宙放射線 (変更なし)	
ウ 高真空、微小重力等 JEMは、高真空、微小重力、電磁波、プラズマ、高温・低温、原子状酸素等の環境に対して、搭乗員の安全及び安全に関わる機器の正常な動作を確保できること。 また、与圧部に設置される安全に関わる機器は、減圧に耐え、再加圧後正常に動作すること。	ウ 高真空、微小重力等 (変更なし)	
(2)誘導環境からの保護 ア 打上げ時の誘導環境 構造及び安全に関わる機器は、打上げ時における振動、加速度、音響、圧力等の誘 導環境について、スペースシャトル搭載時の諸条件に耐えられること。	(2)誘導環境からの保護 ア 打上げ時の誘導環境 構造及び安全に関わる機器は、打上げ時における振動、加速度、音響、圧力等の誘導環境に ついて、 <u>打上げ輸送機</u> 搭載時の諸条件に耐えられること。	スペースシャトルが退役したことと、多校化する輸送手段に柔軟に適合するよう文。
イ 軌道上の誘導環境 (ア)雰囲気空気 酵素濃度、二酸化炭素濃度、一酸化炭素濃度、気圧等の環境については、宇宙ステーション本体の機能に依存するが、JEMにおいても異常を搭乗員に知らせること。また、搭乗員の安全に影響を及ぼさないよう、温度、湿度及び気流を適切に制御するとともに、微生物及び微粒子を適切に除去すること。 (イ)汚染 有害物質は、使用しないことを原則とするが、使用することが避け難い場合は、搭乗員の安全に影響を与えないこと。 なお、一旦発生したものの低減は、宇宙ステーション本体の機能に依存するが、大量	イ 軌道上の誘導環境 (変更なし)	
の有害物質が発生した場合には、一旦与圧部内の空気をJEMの外に排出すること。 (ウ)振動、音響、電磁波 JEMの機器が発生する振動、音響及び電磁波は、搭乗員及び安全に関わる機器に 影響を与えないこと。 また、安全に関わる機器は、宇宙ステーションより発生するこれらの環境に十分耐え られること。		
(3)軌道上環境等の保全 宇宙空間における不要な人工物体となるものの発生については、合理的に可能な限り 抑制するように考慮すること。このため原則として、固体の廃棄物及び短期間に気化し ない液体の廃棄物を軌道上に投棄しないこと。	(3)軌道上環境等の保全 (変更なし)	

宇宙ステーション取付型実験モジュール(JEM)に係る安全評価のための基本指針 (平成8年4月24日宇宙開発委員会安全評価部会)	国際宇宙ステーションの日本実験棟「きぼう」(JEM)に係る安全対策の評価のための基本指針 (平成24年9月6日 宇宙開発利用部会)	備考
5. 構造 JEMの構造は、搭乗員及び搭載機器を宇宙環境から保護するとともに、安全に支持するため、十分な余裕度をもって設計・開発されなければならない。このため、以下のような対策を講じる必要がある。	5. 構造 (変更なし)	
(1)設計 不測の事態において一つの構造部材が損傷しても、搭乗員を危険な状態に陥らせないこと。 また、圧力容器(与圧部構造体及び補給部与圧区構造体を含む。)は、リークビフォアラプチャ又は安全寿命設計であること。	(1)設計 (変更なし)	
(2) 剛性及び強度 ア 剛性 JEMの構造は、打上げ時及び軌道上において想定される環境条件の下で、有害な変形を生じないこと。 また、スペースシャトル搭載時に要求される最低振動数要求を満足すること。	(2)剛性及び強度 ア 剛性 JEMの構造は、打上げ時及び軌道上において想定される環境条件の下で、有害な変形を生じないこと。 また、 <u>打上げ輸送機</u> 搭載時に要求される最低振動数要求を満足すること。	前述のとおり
イ 静荷重強度 JEMの構造は、打上げ時及び軌道上において想定される最大の荷重に対して、十分 な強度を有すること。	イ静荷重強度(変更なし)	
ウ 疲労強度 JEMの構造は、長期の運用に対して、十分な疲労寿命を有するか、又は疲労寿命に 対する十分な余裕をもって交換できること。	ウ 疲労強度 (変更なし)	
(3)構成材料 構成材料については、可燃性、臭気・有害ガス発生、腐食、応力腐食割れ等の特性を 十分考慮して使用すること。	(3)構成材料 (変更なし)	
6. 安全・開発保証 搭乗員の安全に影響を及ぼすシステムについては、安全性並びに安全性を確保する ための信頼性、保全性及び品質保証を十分考慮しなければならない。このため、以下 のような対策を講じる必要がある。	6. 安全・開発保証 (変更なし)	
(1)安全性 安全に関わるシステムについては、適切な故障許容(誤操作を含む。)を確保すること。		
(2)信頼性 アシステムの独立性 安全に関わるシステムについては、他のシステムの故障の影響を可能な限り受けない ようにすること。 また、冗長系は、可能な限り互いに分離して配置すること。		
イ 故障検知 安全に関わるシステムの故障は、可能な限り自動的に検知され、地上要員に通報されるとともに、緊急を要するもの等必要なものは、搭乗員にも通報されること。		
ウ 自律性の確保 安全に関わるシステムについては、地上管制が受けられない場合においても搭乗員の 安全を確保すること。		

宇宙ステーション取付型実験モジュール(JEM)に係る安全評価のための基本指針 (平成8年4月24日宇宙開発委員会安全評価部会)	国際宇宙ステーションの日本実験棟「きぼう」(JEM)に係る安全対策の評価のための基本指針 (平成24年9月6日 宇宙開発利用部会)	備考
エ 自動機能に対するオーバーライド 安全に関わるシステムの自動機能については、搭乗員及び地上操作によるオーバー ライドができること。		
(3)保全性 ア機能中断の防止 安全上連続的に運用する必要のあるシステムは、重要な機能の中断なく保全できること。		
イ 危険防止 保全作業については、船外活動の最小化、粉塵等の発生の最小化、流体の放出の最 小化、最適な防護措置等が行われること。 また、保全に伴う機器の取付け及び取外しは、安全かつ容易にできること。		
(4) 品質保証 安全に関わるシステムの機能、性能等を確保するため、製造管理及び十分な検証を 行うとともに、その記録を保存すること。 また、JEMの安全確保に必要なデータは、その効率的蓄積・利用に資するために、問 題報告・是正処置、部品情報、材料・工程情報等についてデータベース化を図ること。		
7. 人間・機械系設計 JEMは、我が国初めての本格的な有人宇宙活動を提供する場であり、安全確保を図る上で人的要因を十分考慮しなければならない。このため、以下のような対策を講じる必要がある。	7. 人間・機械系設計 (変更なし)	
(1) 搭乗員の保護 搭乗員が触れる可能性のある部分は、適切な丸みを持たせるとともに、破損しても破 片が飛散しないようにするなど、外傷、火傷、感電等が生じないようにすること。 また、足部固定具、取っ手等は、荷重に十分耐えられること。		
(2)誤操作等の防止 安全に関わるシステムについては、搭乗員の負担を軽減するとともに、誤操作及び操作忘れの発生を防止するため、可能な限り自動化すること。 また、JEMの内部装飾、機器の操作手順、視野等については、誤操作等の生じにくいよう十分配慮すること。		
(3)共通化 安全に関わるシステムについては、可能な限り国際的に共通化を図ること。		
8. 緊急対策 火災、減圧、汚染等の異常が発生し、緊急を要するときにおいても、搭乗員の安全に 重大な影響が及ばないようにしなければならない。このため、以下のような対策を講じ る必要がある。	8. 緊急対策 (変更なし)	
(1)緊急警報 緊急警報は、人命に脅威となるような異常を識別でき、安全に退避できるよう十分早く 発信できること。		
また、人命への脅威に関する緊急警報は、異常を発見した搭乗員が警報ボタン等により手動で警報を発出できること。		

宇宙ステーション取付型実験モジュール(JEM)に係る安全評価のための基本指針 (平成8年4月24日宇宙開発委員会安全評価部会)	国際宇宙ステーションの日本実験棟「きぼう」(JEM)に係る安全対策の評価のための基本指針 (平成24年9月6日 宇宙開発利用部会)	備考
(2)アクセス 非常設備、防護具、安全上重要な手順書等は、緊急時においても、搭乗員が容易に 取り出して使用できるように保管すること。 また、通路は、搭乗員が安全かつ速やかに脱出・避難できること。		
(3)減圧及び再加圧 火災、汚染等の異常が発生した場合には、与圧部及び補給部与圧区内の空気を排出 するため、減圧及び再加圧ができること。 また、JEMの起動に際し、搭乗員のJEMへの移乗前に安全の確認ができること。		
9. 安全確保体制 JEMの安全確保に関わる活動については、開発及び運用の担当部門から独立した部門においても行うこと。 また、安全上のあらゆる問題点について、開発及び運用の責任者まで報告される体制を確立すること。 さらに、JEMの開発及び運用に携わる者への安全教育・訓練を実施するとともに、安全確保に係る事項の周知徹底を図ること。	9. 安全確保体制 (変更なし)	
付録 用語の定義 ここでは、本基本指針で使用されている用語のうち、安全に関する用語であって、定義 を明確にしておく必要があると考えられる用語を抽出し、本基本指針における定義を示 す。 【安全】 人間の死傷又は装置・財産の損傷・喪失のおそれのないこと(安全性ともいう。)。		
【安全・開発保証】 安全(性)、信頼性、保全性、品質保証分野を含み、それらを統合して、プログラムの所 期の目的を達成するために実施される保証活動。		
【故障許容】 アイテムに故障が生じても安全性が保持されるように配慮すること。		
【信頼性】 アイテムが与えられた条件下で規定の期間中、要求された機能を果たすこと。		
【ハザード】 事故をもたらす要因が顕在又は潜在する状態。		
【品質保証】 製品が顧客又はユーザの求める品質を十分に有していることの確証を得るために生 産者が行う体系的な活動。		
【保全】 アイテムを規定の運用可能な状態に維持又は修復するための活動。		
【保全性】 規定の保全環境の下で、定められた手順と資源で、運用目的を満足させるために必要な修理、交換等の容易さを表す特性。		
【リスク】 安全でない度合いを被害の程度と被害発生の可能性で表したもの。		